In vivo imaging of farnesoid X receptor activity reveals the ileum as the primary bile acid signaling tissue
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
While bile acids (BAs) have long been known to be essential in dietary lipid absorption and cholesterol catabolism, in recent years an important role for BAs as signalling molecules has emerged. BAs activate mitogen-activated protein kinase pathways, are l ...
We explored the effects of bile acids on triglyceride (TG) homeostasis using a combination of molecular, cellular, and animal models. Cholic acid (CA) prevents hepatic TG accumulation, VLDL secretion, and elevated serum TG in mouse models of hypertriglycer ...
Bile acids (BAs), a group of structurally diverse molecules that are primarily synthesized in the liver from cholesterol, are the chief components of bile. Besides their well-established roles in dietary lipid absorption and cholesterol homeostasis, it has ...
Recent studies have established that bile salts are signaling molecules, besides their classic function in dietary lipid absorption and cholesterol metabolism. Bile salts signal by activating mitogen-activated protein kinase (MAPK) pathways and nuclear rec ...
23-Alkyl-substituted and 6,23-alkyl-disubstituted derivatives of chenodeoxycholic acid are identified as potent and selective agonists of TGR5, a G-protein coupled receptor for bile acids (BAs). In particular, we show that methylation at the C-23(S) positi ...
Cholesterol and bile acid metabolism is tightly controlled by nuclear receptors. The liver X receptor, an oxysterol-activated nuclear receptor, limits cholesterol accumulation in the body both by stimulating reverse cholesterol transport and by inhibiting ...
The distribution of VIP binding sites in rat kidney and adrenal gland has been examined by light microscopic autoradiography. A fully characterized mono-iodinated molecular form of VIP (M-125-I-VIP) which maintains the biological activity of the native pep ...