Inférence bayésiennevignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements.
Traitement automatique du langage naturelLe traitement automatique du langage naturel (TALN), en anglais natural language processing ou NLP, est un domaine multidisciplinaire impliquant la linguistique, l'informatique et l'intelligence artificielle, qui vise à créer des outils de traitement du langage naturel pour diverses applications. Il ne doit pas être confondu avec la linguistique informatique, qui vise à comprendre les langues au moyen d'outils informatiques.
Frequentist inferenceFrequentist inference is a type of statistical inference based in frequentist probability, which treats “probability” in equivalent terms to “frequency” and draws conclusions from sample-data by means of emphasizing the frequency or proportion of findings in the data. Frequentist-inference underlies frequentist statistics, in which the well-established methodologies of statistical hypothesis testing and confidence intervals are founded. The primary formulation of frequentism stems from the presumption that statistics could be perceived to have been a probabilistic frequency.
TF-IDFLe TF-IDF (de l'anglais term frequency-inverse document frequency) est une méthode de pondération souvent utilisée en recherche d'information et en particulier dans la fouille de textes. Cette mesure statistique permet d'évaluer l'importance d'un terme contenu dans un document, relativement à une collection ou un corpus. Le poids augmente proportionnellement au nombre d'occurrences du mot dans le document. Il varie également en fonction de la fréquence du mot dans le corpus.
Résumé automatique de texteUn résumé est une forme de compression textuelle avec perte d'information. Un résumé automatique de texte est une version condensée d'un document textuel, obtenu au moyen de techniques informatiques. La forme la plus connue et la plus visible des condensés de textes est le résumé, représentation abrégée et exacte du contenu d'un document. Cependant, produire un résumé pertinent et de qualité demande au résumeur (un humain ou un système automatique) l'effort de sélectionner, d'évaluer, d'organiser et d'assembler des segments d'information selon leur pertinence.
Statistical parameterIn statistics, as opposed to its general use in mathematics, a parameter is any measured quantity of a statistical population that summarises or describes an aspect of the population, such as a mean or a standard deviation. If a population exactly follows a known and defined distribution, for example the normal distribution, then a small set of parameters can be measured which completely describes the population, and can be considered to define a probability distribution for the purposes of extracting samples from this population.
Classification et catégorisation de documentsLa classification et catégorisation de documents est l'activité du traitement automatique des langues naturelles qui consiste à classer de façon automatique des ressources documentaires, généralement en provenance d'un corpus. Cette classification peut prendre une infinité de formes. On citera ainsi la classification par genre, par thème, ou encore par opinion. La tâche de classification est réalisée avec des algorithmes spécifiques, mis en œuvre par des systèmes de traitement de l'information.
Similarité sémantiqueLa similarité sémantique est une notion définie entre deux concepts soit au sein d'une même hiérarchie conceptuelle, soit - dans le cas d'alignement d'ontologies - entre deux concepts appartenant respectivement à deux hiérarchies conceptuelles distinctes. La similarité sémantique indique que ces deux concepts possèdent un grand nombre d'éléments en commun (propriétés, termes, instances). D’un point de vue psychologie cognitive, les notions de proximité et de similarité sont bien distinctes.
Recherche d'image par le contenuLa recherche d'image par le contenu (en anglais : content-based image retrieval ou CBIR) est une technique permettant de rechercher des images à partir de ses caractéristiques visuelles, c'est-à-dire induite de leurs pixels. Les images sont classiquement décrites comme rendant compte de leur texture, couleur, forme. Un cas typique d'utilisation est la recherche par l'exemple où l'on souhaite retrouver des images visuellement similaires à un exemple donné en requête.
Legal liabilityIn law, liable means "responsible or answerable in law; legally obligated". Legal liability concerns both civil law and criminal law and can arise from various areas of law, such as contracts, torts, taxes, or fines given by government agencies. The claimant is the one who seeks to establish, or prove, liability. Claimants can prove liability through a myriad of different theories, known as theories of liability. Which theories of liability are available in a given case depends on nature of the law in question.