Stimulus sampling as an exploration mechanism for fast reinforcement learning
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The way our brain learns to disentangle complex signals into unambiguous concepts is fascinating but remains largely unknown. There is evidence, however, that hierarchical neural representations play a key role in the cortex. This thesis investigates biolo ...
Auditory perception is an essential part of a robotic system in Human-Robot Interaction (HRI), and creating an artificial auditory perception system that is on par with human has been a long-standing goal for researchers. In fact, this is a challenging res ...
"I choose this restaurant because they have vegan sandwiches" could be a typical explanation we would expect from a human. However, current Reinforcement Learning (RL) techniques are not able to provide such explanations, when trained on raw pixels. RL alg ...
Neural networks (NNs) have been very successful in a variety of tasks ranging from machine translation to image classification. Despite their success, the reasons for their performance are still not well-understood. This thesis explores two main themes: lo ...
Learning how to act and adapting to unexpected changes are remarkable capabilities of humans and other animals. In the absence of a direct recipe to follow in life, behaviour is often guided by rewarding and by surprising events. A positive or a negative o ...
Time series with missing data are signals encountered in important settings for machine learning. Some of the most successful prior approaches for modeling such time series are based on recurrent neural networks that transform the input and previous state ...
Federated and decentralized learning have become key building blocks for privacy-preserving machine learning. Participation in these opaque federations may be better incentivized by transparent communication of each user's contribution. For real-world appl ...
Learning in the brain is poorly understood and learning rules that respect biological constraints, yet yield deep hierarchical representations, are still unknown. Here, we propose a learning rule that takes inspiration from neuroscience and recent advances ...
Spiking neural networks (SNN) are computational models inspired by the brain's ability to naturally encode and process information in the time domain. The added temporal dimension is believed to render them more computationally efficient than the conventio ...
In the past few years, the importance of electric mobility has increased in response to growing concerns about climate change. However, limited cruising range and sparse charging infrastructure could restrain a massive deployment of electric vehicles (EVs) ...