Numerical Approximation of Partial Differential Equations
Publications associées (246)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Multiscale differential equations arise in the modeling of many important problems in the science and engineering. Numerical solvers for such problems have been extensively studied in the deterministic case. Here, we discuss numerical methods for (mean-squ ...
A large portion of software is used for numerical calculations in mathematics, physics and engineering applications. Among the things that make verification in this domain difficult is the quantification of numerical errors, such as roundoff errors and err ...
The aim of the project is double: to understand the flexibility of the Isogeometric Analysis tools through the solution of some PDEs problems; to test the improvement in the computational time given by a partial loops vectorization at compile-time of the L ...
The aim of this work is the development of a geometrical multiscale framework for the simulation of the human cardiovascular system under either physiological or pathological conditions. More precisely, we devise numerical algorithms for the partitioned so ...
Isogeometric analysis (IGA) is a computational methodology recently developed to numerically approximate Partial Differential Equation (PDEs). It is based on the isogeometric paradigm, for which the same basis functions used to represent the geometry are t ...
This work is concerned with numerical methods for matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. In particular, we focus on eigenvalue problems for which the evaluation of the matrix-valued function is computationally expensive. ...
Solving optimal control problems for many different scenarios obtained by varying a set of parameters in the state system is a computationally extensive task. In this paper we present a new reduced framework for the formulation, the analysis and the numeri ...
Numerical methods for parabolic homogenization problems combining finite element methods (FEMs) in space with Runge-Kutta methods in time are proposed. The space discretization is based on the coupling of macro and micro finite element methods following th ...
In this work we focus on the numerical approximation of the solution u of a linear elliptic PDE with stochastic coefficients. The problem is rewritten as a parametric PDE and the functional dependence of the solution on the parameters is approximated by mu ...
We present a new fully first-order strongly hyperbolic representation of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's equations with optional constraint damping terms. We describe the characteristic fields of the system, discuss its hyp ...