ControllabilityControllability is an important property of a control system and plays a crucial role in many control problems, such as stabilization of unstable systems by feedback, or optimal control. Controllability and observability are dual aspects of the same problem. Roughly, the concept of controllability denotes the ability to move a system around in its entire configuration space using only certain admissible manipulations. The exact definition varies slightly within the framework or the type of models applied.
DécidabilitéEn logique mathématique, le terme décidabilité recouvre deux concepts liés : la décidabilité logique et la décidabilité algorithmique. L’indécidabilité est la négation de la décidabilité. Dans les deux cas, il s'agit de formaliser l'idée qu'on ne peut pas toujours conclure lorsque l'on se pose une question, même si celle-ci est sous forme logique. Une proposition (on dit aussi énoncé) est dite décidable dans une théorie axiomatique si on peut la démontrer ou démontrer sa négation dans le cadre de cette théorie.
Commande optimaleLa théorie de la commande optimale permet de déterminer la commande d'un système qui minimise (ou maximise) un critère de performance, éventuellement sous des contraintes pouvant porter sur la commande ou sur l'état du système. Cette théorie est une généralisation du calcul des variations. Elle comporte deux volets : le principe du maximum (ou du minimum, suivant la manière dont on définit l'hamiltonien) dû à Lev Pontriaguine et à ses collaborateurs de l'institut de mathématiques Steklov , et l'équation de Hamilton-Jacobi-Bellman, généralisation de l'équation de Hamilton-Jacobi, et conséquence directe de la programmation dynamique initiée aux États-Unis par Richard Bellman.
Message Passing InterfaceMessage Passing Interface (MPI) est un outil pour le calcul scientifique à haute performance qui permet d'utiliser plusieurs ordinateurs. C'est une norme conçue en 1993-94 pour le passage de messages entre ordinateurs distants ou dans un ordinateur multiprocesseur. Elle est devenue de facto un standard de communication pour des nœuds exécutant des programmes parallèles sur des systèmes à mémoire distribuée. Elle définit une bibliothèque de fonctions, utilisable avec les langages C, C++ et Fortran.
File d'attente de messageUne file d'attente de message ou simplement file de messages est une technique de programmation utilisée pour la communication interprocessus ou la communication de serveur-à-serveur. Les logiciels fournissant ce type de service font partie des « Message-Oriented Middleware » ou MOM. Les files d'attente de message permettent le fonctionnement des liaisons asynchrones normalisées entre deux serveurs, c'est-à-dire de canaux de communications tels que l'expéditeur et le récepteur du message ne sont pas contraints de s'attendre l'un l'autre, mais poursuivent chacun l'exécution de leurs tâches.
Démonstration formelleUne démonstration formelle est une séquence finie de propositions (appelées formules bien formées dans le cas d'un langage formel) dont chacun est un axiome, une hypothèse, ou résulte des propositions précédentes dans la séquence par une règle d'inférence. La dernière proposition de la séquence est un théorème d'un système formel. La notion de théorème n'est en général pas effective, donc n'existe pas de méthode par laquelle nous pouvons à chaque fois trouver une démonstration d'une proposition donnée ou de déterminer s'il y en a une.
Message-oriented middlewareLe terme message-oriented middleware (MOM), intergiciel à messages en français, désigne une famille de logiciels qui permettent l'échange de messages entre les applications présentes sur un réseau informatique. Les MOM font partie des éléments techniques de base des architectures informatiques. Ils permettent une forme de couplage faible entre applications. Transport de messages. Les messages comportent deux parties: l'en-tête technique, utilisée par le MOM et les données qui peuvent être dans n'importe quel format.
Sliding mode controlIn control systems, sliding mode control (SMC) is a nonlinear control method that alters the dynamics of a nonlinear system by applying a discontinuous control signal (or more rigorously, a set-valued control signal) that forces the system to "slide" along a cross-section of the system's normal behavior. The state-feedback control law is not a continuous function of time. Instead, it can switch from one continuous structure to another based on the current position in the state space.
Proof by contradictionIn logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally valid. More broadly, proof by contradiction is any form of argument that establishes a statement by arriving at a contradiction, even when the initial assumption is not the negation of the statement to be proved.
Nonlinear controlNonlinear control theory is the area of control theory which deals with systems that are nonlinear, time-variant, or both. Control theory is an interdisciplinary branch of engineering and mathematics that is concerned with the behavior of dynamical systems with inputs, and how to modify the output by changes in the input using feedback, feedforward, or signal filtering. The system to be controlled is called the "plant".