A first principles study of small Cu-n clusters based on local-density and generalized-gradient approximations to density functional theory
Publications associées (40)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The spatial volume occupied by an atom depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent algorithms and packages to calculate it numerically for other materials. Three-d ...
To model polaronic behavior in strongly correlated transition-metal oxideswith ab initio methods, one typically requires a level of theory beyond that of local density or general gradient density functional theory (DFT) approximations to account for the st ...
Koopmans-compliant functionals emerge naturally from extending the constraint of piecewise linearity of the total energy as a function of the number of electrons to each fractional orbital occupation. When applied to approximate density-functional theory, ...
The electronic charge density plays a central role in determining the behavior of matter at the atomic scale, but its computational evaluation requires demanding electronic-structure calculations. We introduce an atom-centered, symmetry-adapted framework t ...
We study a multimarginal optimal transportation problem in one dimension. For a symmetric, repulsive cost function, we show that, given a minimizing transport plan, its symmetrization is induced by a cyclical map, and that the symmetric optimal plan is uni ...
Density Functional Theory (DFT) and its time-dependent extension (TDDFT) have become two of the most popular approaches for computer simulations of the electronic structure and response properties of quantum systems. A reasonable compromise between accurac ...
Recent experimental advances in atomically thin transition metal dichalcogenide (TMD) metals have unveiled a range of interesting phenomena including the coexistence of charge-density-wave (CDW) order and superconductivity down to the monolayer limit. The ...
Energy functionals which depend explicitly on orbital densities, rather than on the total charge density, appear when applying self-interaction corrections to density-functional theory; this is, e.g., the case for Perdew-Zunger and Koopmans-compliant funct ...
We carry out a first-principles atomistic study of the electronic mechanisms of ligand binding and discrimination in the myoglobin protein. Electronic correlation effects are taken into account using one of the most advanced methods currently available, na ...
Recent advances in large-scale synthesis of graphene and other 2D materials have underscored the importance of local defects such as dislocations and grain boundaries (GBs), and especially their tendency to alter the electronic properties of the material. ...