Structural and electronic properties of small Cu-n clusters using generalized-gradient approximations within density functional theory
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We present an overview of the onetep program for linear-scaling density functional theory (DFT) calculations with large basis set (plane-wave) accuracy on parallel computers. The DFT energy is computed from the density matrix, which is constructed from spa ...
Computational chemistry aims to simulate reactions and molecular properties at the atomic scale, advancing the design of novel compounds and materials with economic, environmental, and societal implications. However, the field relies on approximate quantum ...
Electron-phonon (e-ph) interactions are pervasive in condensed matter, governing phenomena such as transport, superconductivity, charge-density waves, polarons, and metal-insulator transitions. First-principles approaches enable accurate calculations of e- ...
It has long been postulated that within density-functional theory (DFT), the total energy of a finite electronic system is convex with respect to electron count so that 2E(v)[N-0]
The electronic density of states (DOS) quantifies the distribution of the energy levels that can be occupied by electrons in a quasiparticle picture and is central to modern electronic structure theory. It also underpins the computation and interpretation ...
The simulation of condensed matter in first principles Molecular Dynamics (FPMD) heavily relies on Kohn-Sham Density Functional Theory (KS-DFT) calculations. The accuracy of such simulations is governed by the reliability of the underlying potential energy ...
The Minnesota family of exchange-correlation (xc) functionals are among the most popular, accurate, and abundantly used functionals available to date. However, their use in plane-wave based first-principles MD has been limited by their sparse availability. ...
We present first-principles calculations of the dynamic susceptibility in strained and doped ferromagnetic MnBi using time-dependent density functional theory. In spite of being a metal, MnBi exhibits signatures of strong correlation and a proper descripti ...
Metallic transition metal dichalcogenides, such as tantalum diselenide (TaSe2), display quantum correlated phenomena of superconductivity and charge density waves (CDWs) at low temperatures. Here, the photophysics of 2H-TaSe2 during CDW transitions is reve ...
The electronic spectral function of BaNi2As2 is investigated using both angle-resolved photoemission spectroscopy (ARPES) and a combined computational scheme of local density approximation and dynamical mean-field theory (LDA + DMFT). In contrast to the we ...