Atomeredresse=1.25|vignette|Représentation d'un atome d' avec, apparaissant rosé au centre, le noyau atomique et, en dégradé de gris tout autour, le nuage électronique. Le noyau d', agrandi à droite, est formé de deux protons et de deux neutrons. redresse=1.25|vignette|Atomes de carbone à la surface de graphite observés par microscope à effet tunnel. Un atome est la plus petite partie d'un corps simple pouvant se combiner chimiquement avec un autre. Les atomes sont les constituants élémentaires de toutes les substances solides, liquides ou gazeuses.
Langmuir adsorption modelThe Langmuir adsorption model explains adsorption by assuming an adsorbate behaves as an ideal gas at isothermal conditions. According to the model, adsorption and desorption are reversible processes. This model even explains the effect of pressure i.e. at these conditions the adsorbate's partial pressure, , is related to the volume of it, V, adsorbed onto a solid adsorbent. The adsorbent, as indicated in the figure, is assumed to be an ideal solid surface composed of a series of distinct sites capable of binding the adsorbate.
Structure nucléaireLa connaissance de la structure des noyaux atomiques, ou structure nucléaire est une question ouverte après un siècle de recherches en physique nucléaire. La force nucléaire entre les nucléons (protons et neutrons) qui composent le noyau, est une force résiduelle de l'interaction nucléaire forte qui lie les quarks dans le nucléon. L'interaction entre deux nucléons dans le noyau n'a pas d'expression analytique simple (comme par exemple, la loi de Coulomb pour l'électrostatique), notamment si l'on doit tenir compte de l'effet des nucléons environnants.
Structure (logique mathématique)En logique mathématique, plus précisément en théorie des modèles, une structure est un ensemble muni de fonctions et de relations définies sur cet ensemble. Les structures usuelles de l'algèbre sont des structures en ce sens. On utilise également le mot modèle comme synonyme de structure (voir Note sur l'utilisation du mot modèle). La sémantique de la logique du premier ordre se définit dans une structure.