Publication

Perceptual learning: why mice do not play backgammon

Elisa Tartaglia
2009
Thèse EPFL
Résumé

Perceptual learning is the ability to modify perception through practice. As a form of brain plasticity, perceptual learning has been studied for more than thirty years in different fields including psychology, neurophysiology and computational neuroscience. Thanks to its simple nature, perceptual learning is often considered a basic form of learning, and an optimal starting point to understand more complex forms of plasticity. From a computational perspective, perceptual learning is usually described with simple neural network architectures. Here I demonstrate by empirical results and theoretical considerations why current computational models are inadequate to describe perceptual learning. Paradoxically, simple computational models often largely outperform human performance. While very simple feed-forward neural networks can learn any stimulus-response mapping, the human brain cannot. Common neural networks consider the learning process a mere computational problem, primarily focusing on stimulus response mappings. However, I will show that perceptual learning is a more complex phenomenon. For example, while neural networks can learn only one task per network, in real learning situations, human observers often have to learn multiple tasks by using the very same neurons. Hence, more plausible computational approaches that account for the complex learning situations of human observers, need to be developed.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (35)
Apprentissage
L’apprentissage est un ensemble de mécanismes menant à l'acquisition de savoir-faire, de savoirs ou de connaissances. L'acteur de l'apprentissage est appelé apprenant. On peut opposer l'apprentissage à l'enseignement dont le but est de dispenser des connaissances et savoirs, l'acteur de l'enseignement étant l'enseignant.
Réseau de neurones récurrents
Un réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Réseau de neurones à propagation avant
Un réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Afficher plus
Publications associées (103)

Optimizing Dynamic Aperture Studies with Active Learning

Davide Di Croce, Tatiana Pieloni, Ekaterina Krymova, Massimo Giovannozzi

Dynamic aperture is an important concept for the study of non-linear beam dynamics in circular accelerators. It describes the extent of the phase-space region where a particle's motion remains bounded over a given number of turns. Understanding the feature ...
2024

Evaluating the Impact of Learner Control and Interactivity in Conversational Tutoring Systems for Persuasive Writing

Thiemo Wambsganss

Conversational tutoring systems (CTSs) offer a promising avenue for individualized learning support, especially in domains like persuasive writing. Although these systems have the potential to enhance the learning process, the specific role of learner cont ...
2024

Computational models of intrinsic motivation for curiosity and creativity

Wulfram Gerstner, Alireza Modirshanechi, Sophia Becker

We link Ivancovsky et al.'s novelty-seeking model (NSM) to computational models of intrinsically motivated behavior and learning. We argue that dissociating different forms of curiosity, creativity, and memory based on the involvement of distinct intrinsic ...
2024
Afficher plus
MOOCs associés (30)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.