Material Classification Using Color and NIR Images
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Humans have the ability to learn. Having seen an object we can recognise it later. We can do this because our nervous system uses an efficient and robust visual processing and capabilities to learn from sensory input. On the other hand, designing algorithm ...
This paper presents a novel approach for visual scene representation, combining the use of quantized color and texture local invariant features (referred to here as {\em visterms}) computed over interest point regions. In particular we investigate the diff ...
This paper presents a novel approach for visual scene representation, combining the use of quantized color and texture local invariant features (referred to here as {\em visterms}) computed over interest point regions. In particular we investigate the diff ...
We propose an algorithm for very high-resolution satellite image classification that combines non-supervised segmentation with a supervised classification. Both multi-spectral data and local spatial priors are used in the Gaussian Hidden Markov Random Fiel ...