Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The following paper presents a novel audio-visual approach for unsupervised speaker locationing. Using recordings from a single, low-resolution room overview camera and a single far-field microphone, a state-of-the art audio-only speaker localization system (traditionally called speaker diarization) is extended so that both acoustic and visual models are estimated as part of a joint unsupervised optimization problem. The speaker diarization system first automatically determines the number of speakers and estimates “who spoke when”, then, in a second step, the visual models are used to infer the location of the speakers in the video. The experiments were performed on real-world meetings using 4.5 hours of the publicly available AMI meeting corpus. The proposed system is able to exploit audio-visual integration to not only improve the accuracy of a state-of-the-art (audioonly) speaker diarization, but also adds visual speaker locationing at little incremental engineering and computation costs.