Speech/Non-Speech Detection in Meetings from Automatically Extracted Low Resolution Visual Features
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The speech signal conveys information on different time scales from short (20--40 ms) time scale or segmental, associated to phonological and phonetic information to long (150--250 ms) time scale or supra segmental, associated to syllabic and prosodic info ...
Speaker diarization is the task of identifying ``who spoke when'' in an audio stream containing multiple speakers. This is an unsupervised task as there is no a priori information about the speakers. Diagnostical studies on state-of-the-art diarization sys ...
This study examined whether rapid temporal auditory processing, verbal working memory capacity, non-verbal intelligence, executive functioning, musical ability and prior foreign language experience predicted how well native English speakers (N = 120) discr ...
Automatic non-native accent assessment has many potential benefits in language learning and speech technologies. The three fundamental challenges in automatic accent assessment are to characterize, model and assess individual variation in speech of the non ...
We address the classical problem of delta feature computation, and interpret the operation involved in terms of Savitzky-Golay (SG) filtering. Features such as the mel-frequency cepstral coefficients (MFCCs), obtained based on short-time spectra of the spe ...
Speaker diarization is the task of identifying “who spoke when” in an audio stream containing multiple speakers. This is an unsupervised task as there is no a priori information about the speakers. Diagnostical studies on state-of-the-art diarization syste ...
In this thesis, methods and models are developed and presented aiming at the estimation, restoration and transformation of the characteristics of human speech. During a first period of the thesis, a concept was developed that allows restoring prosodic voic ...
Overlapping speech has been identified as one of the main sources of errors in diarization of meeting room conversations. Therefore, overlap detection has become an important step prior to speaker diarization. Studies on conversational analysis have shown ...
Progressive apraxia of Speech (PAoS) is a progressive motor speech disorder associated with neurodegenerative disease causing impairment of phonetic encoding and motor speech planning. Clinical observation and acoustic studies show that duration analysis p ...
Speaker diarization of meetings can be significantly improved by overlap handling. Several previous works have explored the use of different features such as spectral, spatial and energy for overlap detection. This paper proposes a method to estimate proba ...