Classification et catégorisation de documentsLa classification et catégorisation de documents est l'activité du traitement automatique des langues naturelles qui consiste à classer de façon automatique des ressources documentaires, généralement en provenance d'un corpus. Cette classification peut prendre une infinité de formes. On citera ainsi la classification par genre, par thème, ou encore par opinion. La tâche de classification est réalisée avec des algorithmes spécifiques, mis en œuvre par des systèmes de traitement de l'information.
Fouille de textesLa fouille de textes ou « l'extraction de connaissances » dans les textes est une spécialisation de la fouille de données et fait partie du domaine de l'intelligence artificielle. Cette technique est souvent désignée sous l'anglicisme text mining. Elle désigne un ensemble de traitements informatiques consistant à extraire des connaissances selon un critère de nouveauté ou de similarité dans des textes produits par des humains pour des humains.
Labeled dataLabeled data is a group of samples that have been tagged with one or more labels. Labeling typically takes a set of unlabeled data and augments each piece of it with informative tags. For example, a data label might indicate whether a photo contains a horse or a cow, which words were uttered in an audio recording, what type of action is being performed in a video, what the topic of a news article is, what the overall sentiment of a tweet is, or whether a dot in an X-ray is a tumor.
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Sac de motsLa représentation par sac de mots (ou bag of words en anglais) est une description de document (texte, image...) très utilisée en recherche d'information. On considère que le monde peut être décrit au moyen d'un dictionnaire (de « mots »). Dans sa version la plus simple, un document particulier est représenté par l'histogramme des occurrences des mots le composant : pour un document donné, chaque mot se voit affecté le nombre de fois qu'il apparaît dans le document (voir la notion de multi-ensemble, bag en anglais).
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Apprentissage auto-superviséL'apprentissage auto-supervisé ("self-supervised learning" en anglais) (SSL) est une méthode d'apprentissage automatique. Il apprend à partir d'échantillons de données non étiquetés. Il peut être considéré comme une forme intermédiaire entre l'apprentissage supervisé et non supervisé. Il est basé sur un réseau de neurones artificiels. Le réseau de neurones apprend en deux étapes. Tout d'abord, la tâche est résolue sur la base de pseudo-étiquettes qui aident à initialiser les poids du réseau.
Word2vecEn intelligence artificielle et en apprentissage machine, Word2vec est un groupe de modèles utilisé pour le plongement lexical (word embedding). Ces modèles ont été développés par une équipe de recherche chez Google sous la direction de . Ce sont des réseaux de neurones artificiels à deux couches entraînés pour reconstruire le contexte linguistique des mots. La méthode est implémentée dans la bibliothèque Python Gensim. Deux architectures ont été initialement proposées pour apprendre les Word2vec, le modèle de sacs de mots continus (CBOW: continuous bag of words) et le modèle skip-gram.
Recherche plein texteLa recherche (en) plein texte (appelée aussi recherche en texte intégral ou recherche de texte libre) est une technique de recherche dans un document électronique ou une base de données textuelles, qui consiste pour le moteur de recherche à examiner tous les mots de chaque document enregistré et à essayer de les faire correspondre à ceux fournis par l'utilisateur. Les techniques de recherche sont devenues fréquentes dans les bases de données bibliographiques en ligne dans les années 1970.
Documentthumb|right|Exemple de document papier. Un document renvoie à un ensemble formé par un support et une information (le contenu), celle-ci enregistrée de manière persistante. Il a une valeur explicative, descriptive ou de preuve. Vecteur matériel de la pensée humaine, il joue un rôle essentiel dans la plupart des sociétés contemporaines, tant pour le fonctionnement de leurs administrations que dans l'élaboration de leurs savoirs.