Multi-stream Processing for Noise Robust Speech Recognition
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The signal processing community is increasingly interested in using information theoretic concepts to build signal processing algorithms for a variety of applications. A general theory on how to apply the mathematical concepts of information theory to the ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
Multi-stream based automatic speech recognition (ASR) systems outperform their single stream counterparts, especially in the case of noisy speech. However, the main issues in multi-stream systems are to know a) Which streams to be combined, and b) How to c ...
Robustness against external noise is an important requirement for automatic speech recognition (ASR) systems, when it comes to deploying them for practical applications. This thesis proposes and evaluates new feature-based approaches for improving the ASR ...
In general, entropy gives us a measure of the number of bits required to represent some information. When applied to probability mass function (PMF), entropy can also be used to measure the ``peakiness'' of a distribution. In this paper, we propose using t ...
Recently, entropy measures at different stages of recognition have been used in automatic speech recognition (ASR) task. In a recent paper, we proposed that formant positions of a spectrum can be captured by multi-resolution spectral entropy feature. In th ...
In general, entropy gives us a measure of the number of bits required to represent some information. When applied to probability mass function (PMF), entropy can also be used to measure the ``peakiness'' of a distribution. In this paper, we propose using t ...
Methods to improve noise robustness of speech recognition systems often result in degradation of recognition performance for clean speech. Recently proposed Phase AutoCorrelation (PAC) \cite{ikbal03,ikbal03a} based features, showing noticeable improvement ...