Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Perception de la paroleLa perception de la parole est le processus par lequel les humains sont capables d'interpréter et de comprendre les sons utilisés dans le langage. L'étude de la perception de la parole est reliée aux champs de la phonétique, de phonologie en linguistique, de psychologie cognitive et de perception en psychologie. Les recherches dans ce domaine essaient de comprendre comment les auditeurs humains reconnaissent les phonèmes (sons de la paroles) ou autres sons tels que la syllabe ou les rimes, et utilisent cette information pour comprendre le langage parlé.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Auto-encodeurUn auto-encodeur (autoencodeur), ou auto-associateur est un réseau de neurones artificiels utilisé pour l'apprentissage non supervisé de caractéristiques discriminantes. L'objectif d'un auto-encodeur est d'apprendre une représentation (encodage) d'un ensemble de données, généralement dans le but de réduire la dimension de cet ensemble. Récemment, le concept d'auto-encodeur est devenu plus largement utilisé pour l'apprentissage de modèles génératifs.
Traitement du signalLe traitement du signal est la discipline qui développe et étudie les techniques de traitement, d'analyse et d' des . Parmi les types d'opérations possibles sur ces signaux, on peut dénoter le contrôle, le filtrage, la compression et la transmission de données, la réduction du bruit, la déconvolution, la prédiction, l'identification, la classification Bien que cette discipline trouve son origine dans les sciences de l'ingénieur (particulièrement l'électronique et l'automatique), elle fait aujourd'hui largement appel à de nombreux domaines des mathématiques, comme la , les processus stochastiques, les espaces vectoriels et l'algèbre linéaire et des mathématiques appliquées, notamment la théorie de l'information, l'optimisation ou encore l'analyse numérique.
Knowledge-based systemsA knowledge-based system (KBS) is a computer program that reasons and uses a knowledge base to solve complex problems. The term is broad and refers to many different kinds of systems. The one common theme that unites all knowledge based systems is an attempt to represent knowledge explicitly and a reasoning system that allows it to derive new knowledge. Thus, a knowledge-based system has two distinguishing features: a knowledge base and an inference engine.
Traitement de la paroleLe traitement de la parole est une discipline technologique dont l'objectif est la captation, la transmission, l'identification et la synthèse de la parole. Dans ce domaine, on peut définir la parole comme un texte oral. On s'intéresse à l'intelligibilité, c'est-à-dire à la possibilité, pour la personne qui écoute, de comprendre sans erreur le texte émis ; à l'amélioration de l'intelligibilité quand le signal est dégradé ; à l'identification de la personne qui parle ; à l'établissement automatique d'un texte écrit à partir de la parole ; à la synthèse de la parole à partir d'un texte écrit.
Système de classeursUn système de classeurs (Learning Classifier System ou LCS en anglais) est un système d'apprentissage automatique utilisant l'apprentissage par renforcement et les algorithmes génétiques. Ils ont été introduits par Holland en 1977 et développé par Goldberg en 1989 Un système de classeurs (aussi appelé classifiers) est composé d'une base de règles, appelée classeur, associés à un poids. Chaque règle est composée d'une partie condition et d'une partie action. Le classeur commence par être initialisé (aléatoirement ou non).
ClassificateurEn grammaire, un classificateur, un mot de mesure ou un spécificatif est un mot ou un morphème utilisé dans certaines langues et dans certains contextes pour indiquer la classe d'un nom. Ces classes sont généralement définies entre autres par des caractéristiques sémantiques (comme la forme de l'objet). Les systèmes de classificateurs utilisent une vingtaine de classificateurs voire plus. Les noms n'ont pas tous besoin de classificateurs, et les noms prennent souvent plus d'un classificateur.