Alignement de séquencesEn bio-informatique, l'alignement de séquences (ou alignement séquentiel) est une manière de représenter deux ou plusieurs séquences de macromolécules biologiques (ADN, ARN ou protéines) les unes sous les autres, de manière à en faire ressortir les régions homologues ou similaires. L'objectif de l'alignement est de disposer les composants (nucléotides ou acides aminés) pour identifier les zones de concordance. Ces alignements sont réalisés par des programmes informatiques dont l'objectif est de maximiser le nombre de coïncidences entre nucléotides ou acides aminés dans les différentes séquences.
Compound probability distributionIn probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables. If the parameter is a scale parameter, the resulting mixture is also called a scale mixture.
Multiple sequence alignmentMultiple sequence alignment (MSA) may refer to the process or the result of sequence alignment of three or more biological sequences, generally protein, DNA, or RNA. In many cases, the input set of query sequences are assumed to have an evolutionary relationship by which they share a linkage and are descended from a common ancestor. From the resulting MSA, sequence homology can be inferred and phylogenetic analysis can be conducted to assess the sequences' shared evolutionary origins.
Traitement de la paroleLe traitement de la parole est une discipline technologique dont l'objectif est la captation, la transmission, l'identification et la synthèse de la parole. Dans ce domaine, on peut définir la parole comme un texte oral. On s'intéresse à l'intelligibilité, c'est-à-dire à la possibilité, pour la personne qui écoute, de comprendre sans erreur le texte émis ; à l'amélioration de l'intelligibilité quand le signal est dégradé ; à l'identification de la personne qui parle ; à l'établissement automatique d'un texte écrit à partir de la parole ; à la synthèse de la parole à partir d'un texte écrit.
Reconnaissance de formesthumb|Reconnaissance de forme à partir de modélisation en 3D La reconnaissance de formes (ou parfois reconnaissance de motifs) est un ensemble de techniques et méthodes visant à identifier des régularités informatiques à partir de données brutes afin de prendre une décision dépendant de la catégorie attribuée à ce motif. On considère que c'est une branche de l'intelligence artificielle qui fait largement appel aux techniques d'apprentissage automatique et aux statistiques.
Expérience naturelleUne expérience naturelle ou expérimentation naturelle est une expérience dans laquelle l'assignation aléatoire au traitement est provoquée par des causes naturelles et/ou politiques. On oppose ainsi les expériences naturelles aux expériences contrôlées dans laquelle l'assignation au traitement est aléatoirement déterminée pour les besoins de l'étude. Par exemple, David Card a utilisé l'exode de Mariel comme une expérience naturelle pour mesurer l'effet de l'immigration sur le marché du travail en Floride.
Mel-frequency cepstrumIn sound processing, the mel-frequency cepstrum (MFC) is a representation of the short-term power spectrum of a sound, based on a linear cosine transform of a log power spectrum on a nonlinear mel scale of frequency. Mel-frequency cepstral coefficients (MFCCs) are coefficients that collectively make up an MFC. They are derived from a type of cepstral representation of the audio clip (a nonlinear "spectrum-of-a-spectrum").
Streamingvignette|Une configuration de pour la télédiffusion. Le (du verbe anglais transitif , « transférer en mode continu »), flux, lecture en continu, lecture en transit, diffusion en continu ou diffusion en mode continu, est un procédé de diffusion d'un flux audio ou vidéo en « direct » ou en léger différé. Très utilisé sur Internet et sur les réseaux de téléphonie mobile, le permet la lecture d'un flux audio ou vidéo (cas de la vidéo à la demande) à mesure qu'il est diffusé.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Informatique affectiveL’informatique affective ou informatique émotionnelle (en anglais, affective computing) est l'étude et le développement de systèmes et d'appareils ayant les capacités de reconnaître, d’exprimer, de synthétiser et modéliser les émotions humaines. C'est un domaine de recherche interdisciplinaire couvrant les domaines de l'informatique, de la psychologie et des sciences cognitives qui consiste à étudier l’interaction entre technologie et sentiments.