Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Multimedia meeting collections, composed of unedited audio and video streams, handwritten notes, slides, and electronic documents that jointly constitute a raw record of complex human interaction processes in the workplace, have attracted interest due to t ...
We address the problem of unsupervised image auto-annotation with probabilistic latent space models. Unlike most previous works, which build latent space representations assuming equal relevance for the text and visual modalities, we propose a new way of m ...
Effectively managing a large collection of multimedia documents is a challenge, addressed by many disciplines from signal processing through database systems to artificial intelligence and interaction design. The problems to be solved have rarely been cons ...
We address the problem of unsupervised image auto-annotation with probabilistic latent space models. Unlike most previous works, which build latent space representations assuming equal relevance for the text and visual modalities, we propose a new way of m ...
In this article we present a novel approach of integrating textual and visual descriptors of images in a unified retrieval structure. The methodology, inspired from text retrieval and information filtering is based on Latent Semantic Indexing (LS1). ...
This paper presents an indexing system for spoken audio documents. The framework is indexing and retrieval of broadcast news. The proposed indexing system applies latent semantic analysis (LSA) and self-organizing maps (SOM) to map the documents into a sem ...
This paper describes a new latent semantic indexing (LSI) method for spoken audio documents. The framework is indexing broadcast news from radio and TV as a combination of large vocabulary continuous speech recognition (LVCSR), natural language processing ...
A method is presented to provide a useful searchable index for spoken audio documents. The task differs from the traditional (text) document indexing, because large audio databases are decoded by automatic speech recognition and decoding errors occur frequ ...
This paper presents an indexing system for spoken audio documents. The framework is indexing and retrieval of broadcast news. The proposed indexing system applies latent semantic analysis (LSA) and self-organizing maps (SOM) to map the documents into a sem ...
An important problem for the information retrieval from spoken documents is how to extract those relevant documents which are poorly decoded by the speech recognizer. In this paper we propose a stochastic index for the documents based on the Latent Semanti ...