A supervised learning approach based on STDP and polychronization in spiking neuron networks
Publications associées (83)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Our brain continuously self-organizes to construct and maintain an internal representation of the world based on the information arriving through sensory stimuli. Remarkably, cortical areas related to different sensory modalities appear to share the same f ...
Neuromorphic systems provide brain-inspired methods of computing. In a neuromorphic architecture, inputs are processed by a network of neurons receiving operands through synaptic interconnections, tuned in the process of learning. Neurons act simultaneousl ...
We present an unsupervised representation learning approach that compactly encodes the motion dependencies in videos. Given a pair of images from a video clip, our framework learns to predict the long-term 3D motions. To reduce the complexity of the learni ...
The brain needs to predict how the body reacts to motor commands, but how a network of spiking neurons can learn non-linear body dynamics using local, online and stable learning rules is unclear. Here, we present a supervised learning scheme for the feedfo ...
Neuromorphic systems provide biologically inspired methods of computing, alternative to the classical von Neumann approach. In these systems, computation is performed by a network of spiking neurons controlled by the values of their synaptic weights, which ...
Animals learn to make predictions, such as associating the sound of a bell with upcoming feeding or predicting a movement that a motor command is eliciting. How predictions are realized on the neuronal level and what plasticity rule underlies their learnin ...
Neural networks have been traditionally considered robust in the sense that their precision degrades gracefully with the failure of neurons and can be compensated by additional learning phases. Nevertheless, critical applications for which neural networks ...
Experimental measurements of pairwise connection probability of pyramidal neurons together with the distribution of synaptic weights have been used to construct randomly connected model networks. However, several experimental studies suggest that both wiri ...
The development of sensory receptive fields has been modeled in the past by a variety of models including normative models such as sparse coding or independent component analysis and bottom-up models such as spike-timing dependent plasticity or the Bienen- ...
Everybody knows what it feels to be surprised. Surprise raises our attention and is crucial for learning. It is a ubiquitous concept whose traces have been found in both neuroscience and machine learning. However, a comprehensive theory has not yet been de ...