Synthetic turbulence, fractal interpolation, and large-eddy simulation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Large-eddy simulations (LESs) of obstacle-free wakes, in a channel like geometry with an homogeneous transverse direction, are carried out in order to investigate the influence of confinement on turbulent wakes. The numerical solver makes use of a multi-do ...
A class of numerical schemes is developed for the study of charged particle transport in complex stationary electromagnetic fields and tested for fields obtained from a numerical solution of the magneto-hydrodynamic equation. The performances of these sche ...
We introduce a new convex formulation for stable principal component pursuit (SPCP) to decompose noisy signals into low-rank and sparse representations. For numerical solutions of our SPCP formulation, we first develop a convex variational framework and th ...
In this project, we present some applications of Isogeometric Analysis in stationary fluid dynamics problems. Specially, we focus on the numerical solution of the Stokes and Navier-Stokes equations and the fulfillment of the inf-sup conditions, specificall ...
We are interested in the numerical solution of the unsteady Navier-Stokes equations on large scale parallel architectures. We consider efficient preconditioners, such as the Pressure Convection-Diffusion (PCD), the Yosida preconditioner, the SIMPLE precond ...
In this paper we consider the numerical solution of the three-dimensional fluid–structure interaction problem in haemodynamics, in the case of real geometries, physiological data and finite elasticity vessel deformations. We study some new inexact schemes, ...
A point-wise approach that can be used efficiently in the numerical solution of Electric Field Integral Equations is introduced. The algorithm is based on the so-called magic distance concept, which defines exactly the point-to-point equivalent of a four-d ...
Isogeometric analysis (IGA) is a computational methodology recently developed to numerically approximate Partial Differential Equation (PDEs). It is based on the isogeometric paradigm, for which the same basis functions used to represent the geometry are t ...
We consider elliptic PDEs (partial differential equations) in the framework of isogeometric analysis, i.e., we treat the physical domain by means of a B-spline or NURBS mapping which we assume to be regular. The numerical solution of the PDE is computed by ...
We start by describing how higher-order function support can be added to a (first order) functional verification framework. We cover both the higher-order construct management and framework extensions necessary for constraint specification. Next, we outlin ...