Modèle probitEn statistiques, le modèle probit est un modèle de régression binomiale. Le modèle probit a été introduit par Chester Bliss en 1934. C'est un cas particulier du modèle linéaire généralisé. Soit Y une variable aléatoire binaire (i.e. prenant pour valeur 0 ou 1) et X un vecteur de variables dont on suppose qu'il influence Y. On fait l'hypothèse que le modèle s'écrit de la manière suivante : où désigne la fonction de répartition de la loi normale centrée réduite. Régression logistique Catégorie:Modèle statist
Validité prédictiveLa Validité prédictive est un terme utilisé dans l'évaluation des personnes. C'est une qualité psychométrique désignant la capacité d'un outil de mesure à prédire correctement un événement futur. Cette valeur est mesurée par la corrélation entre le prédicteur (un test, un entretien, un outil d'évaluation) et un critère de réussite (professionnel le plus souvent). En matière de recrutement ou de gestion des ressources humaines, les techniques et outils possédant les meilleures validités prédictives sont les suivants: Assessment Centers, questionnaires de personnalité, tests d'aptitudes, prises de références, recommandations, entretiens en face à face.
Content validityIn psychometrics, content validity (also known as logical validity) refers to the extent to which a measure represents all facets of a given construct. For example, a depression scale may lack content validity if it only assesses the affective dimension of depression but fails to take into account the behavioral dimension. An element of subjectivity exists in relation to determining content validity, which requires a degree of agreement about what a particular personality trait such as extraversion represents.
Multivariate t-distributionIn statistics, the multivariate t-distribution (or multivariate Student distribution) is a multivariate probability distribution. It is a generalization to random vectors of the Student's t-distribution, which is a distribution applicable to univariate random variables. While the case of a random matrix could be treated within this structure, the matrix t-distribution is distinct and makes particular use of the matrix structure.
Loi de FréchetEn théorie des probabilités et en statistique, la loi de Fréchet est un cas particulier de loi d'extremum généralisée au même titre que la loi de Gumbel ou la loi de Weibull. Le nom de cette loi est dû à Maurice Fréchet, auteur d'un article à ce sujet en 1927. Des travaux ultérieurs ont été réalisés par Ronald Aylmer Fisher et L. H. C. Tippett en 1928 et par Emil Julius Gumbel en 1958. Sa fonction de répartition est donnée par : où est un paramètre de forme.