Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Thorough testing of software systems requires ways to productively employ fault injection. We describe a technique for automatically identifying the errors exposed by shared libraries, finding good injection targets in program binaries, and producing corresponding injection scenarios. We present a framework for writing precise custom triggers that inject the desired faults--in the form of error return codes and corresponding side effects--at the boundary between shared libraries and applications. We incorporated these ideas in the LFI tool chain. With no developer assistance and no access to source code, this new version of LFI found 11 serious, previously unreported bugs in the BIND name server, the Git version control system, the MySQL database server, and the PBFT replication system. LFI achieved entirely automatically 35%-60% improvement in recovery-code coverage, without requiring any new tests. LFI can be downloaded from http://lfi.epfl.ch.
Katrin Beyer, Igor Tomic, Andrea Penna
Pavlos Nikolopoulos, Christina Fragouli, Suhas Diggavi, Sundara Rajan Srinivasavaradhan
Mathias Josef Payer, Sirus Shahini