Publication

Trust-Based Rating Prediction for Recommendation in Web 2.0 Collaborative Learning Social Software

Denis Gillet, Na Li
2010
Article de conférence
Résumé

Benefiting from the advent of social software, information sharing becomes pervasive. Personalized rating systems have emerged to evaluate the quality of user-generated content in open environment and provide recommendation based on users’ past experience. In this paper, a trust-based rating prediction approach for recommendation in Web 2.0 collaborative learning social software is proposed. Trust network is exploited in the rating prediction scheme and a multi-relational trust metric is developed in an implicit way. Finally the evaluation of the approach is performed using the dataset of collaborative learning social software, namely Remashed.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.