Learning from EEG Error-related Potentials in Noninvasive Brain-Computer Interfaces
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
People with severe motor disabilities (spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), etc.) but with intact brain functions are somehow prisoners of their own body. They need alternative ways of communication and control to interact with th ...
After the recent development of the theory of nonlinear dynamical systems and deterministic chaos and the introduction of one, in theory, simple method for computing the phase space, many researchers started to analyze electroencephalographic (EEG) signals ...
Spatial filtering is a widely used dimension reduction method in electroencephalogram based brain-computer interface systems. In this paper a new algorithm is proposed, which learns spatial filters from a training dataset. In contrast to existing approache ...
People with severe motor disabilities (spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), etc.) but with intact brain functions are somehow prisoners of their own body. They need alternative ways of communication and control to interact with th ...
Non-invasive brain-computer interfaces are traditionally based on mu rhythms, beta rhythms, slow cortical potentials or P300 event-related potentials. However, there is mounting evidence that neural oscillations up to 200 Hz play important roles in process ...
EEG recordings provide an important means of brain-computer communication, but their classification accuracy is limited by unforeseeable variations in the signal due to artefacts or recogniser-subject feedback. A number of techniques were recently develope ...
Brain-computer interfaces, as any other interaction modality based on physiological signals and body channels (e.g., muscular activity, speech and gestures), are prone to errors in the recognition of subject's intent. In this paper we exploit a unique feat ...
Scalp recorded electroencephalogram signals (EEG) reflect the combined synaptic and axonal activity of groups of neurons. In addition to their clinical applications, EEG signals can be used as support for direct brain-computer communication devices (Brain- ...
EEG recordings provide an important means of brain-computer communication, but their classification accuracy is limited by unforeseeable variations in the signal due to artefacts or recogniser-subject feedback. A number of techniques were recently develope ...
Brain-computer interfaces (BCIs), as any other interaction modality based on physiological signals and body channels (e.g., muscular activity, speech and gestures), are prone to errors in the recognition of subject's intent. An elegant approach to improve ...