Publication

Software Verification by Combining Program Analyses of Adjustable Precision

Grégory Théoduloz
2010
Thèse EPFL
Résumé

In automatic software verification, we have observed a theoretical convergence of model checking and program analysis. In practice, however, model checkers, on one hand, are still mostly concerned with precision, e.g., the removal of spurious counterexamples. Lattice-based program analyzers, on the other hand, are primarily concerned with efficiency. To achieve their respective goal, the former builds and refine reachability tress while the latter annotates location with abstract states and rely on overapproximation to accelerate convergence. In this thesis we focus on capturing within a framework existing approaches as well as new solutions with the objective of enabling a better understanding of the fundamental similarities and differences between approaches and with a strong accent on implementability. In a first step, we designed and implemented a framework and a corresponding algorithm for software verification called configurable program analysis. The algorithm can be configured to perform not only a purely tree-based or a purely lattice-based analysis, but offers many intermediate settings that have not been evaluated before. An instance of an analysis in the framework consists of one or more program analyses, such as a predicate abstraction or a shape analysis, and their execution and interaction is controlled using several parameters of our generic verification algorithm. Our experiments consider different configurations of combinations of symbolic analyses. By varying the value of parameters we were able to explore a continuous precision-efficiency spectrum and we showed that it can lead to dramatic improvements in efficiency. In a second step, we improved our framework and algorithm to enable the program analysis to dynamically (on-line) adjust its precision depending on the accumulated results. The framework of configurable program analysis offers flexible, but static, composition of program analyses. Our extension enables composite analyses to adjust the precision of each of their component analyses independently and dynamically. To illustrate, we can allow the explicit tracking of the values of a variable to be switched off in favor of a predicate abstraction when and where the number of different variable values that have been encountered has exceeded a specified threshold. We evaluated the dynamic precision adjustment mechanism by considering combinations of symbolic and explicit analyses. We analyzed code taken from an SSH client/server software as well as hand-crafted examples. We showed that the new approach offers significant gains compared with a purely symbolic, predicate-abstraction-based approach. In a third step, we consider the problem of refinement in addition to the dynamic adjustment of the precision. In contrast to precision adjustment, refinement only increases the precision of the analysis. Moreover, when a refinement occurs, states with a lower precision are discarded and replaced by states with a higher precision. Based on our framework, we present a novel refinement approach for shape analysis, a promising technique to prove program properties about recursive data structures. The challenge is to automatically determine the data-structure type, and to supply the shape analysis with the necessary information about the data structure. We present a stepwise approach to the selection of instrumentation predicates for a TVLA-based shape analysis, which takes us a step closer towards the fully automatic verification of data structure implementations. The approach uses two techniques to guide the refinement of shape abstractions. First, during program exploration, an explicit heap analysis collects sample instances of the heap structures. The samples are used to identify the data structures that are manipulated by the program. Second, during abstraction refinement along an infeasible error path, we consider different possible heap abstractions and choose the coarsest one that eliminates the infeasible path. We were able to successfully verify example programs from a data-structure library that manipulate doubly-linked lists and trees. The techniques presented in this thesis have been implemented as an extension to the BLAST model checker.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (43)
Structure de données persistante
En informatique, une structure de données persistante est une structure de données qui préserve ses versions antérieures lorsqu'elle est modifiée ; une telle structure est immuable, car ses opérations ne la modifient pas en place (de manière visible) mais renvoient au contraire de nouvelles structures. Une structure est partiellement persistante si seule sa version la plus récente peut être modifiée, les autres n'étant accessibles qu'en lecture. La structure est dite totalement persistante si chacune de ses versions peut être lue ou modifiée.
Structure de données
En informatique, une structure de données est une manière d'organiser les données pour les traiter plus facilement. Une structure de données est une mise en œuvre concrète d'un type abstrait. Pour prendre un exemple de la vie quotidienne, on peut présenter des numéros de téléphone par département, par nom, par profession (comme les Pages jaunes), par numéro téléphonique (comme les annuaires destinés au télémarketing), par rue et/ou une combinaison quelconque de ces classements.
Vérification de modèles
thumb|308x308px|Principe du model checking. En informatique, la vérification de modèles, ou model checking en anglais, est le problème suivant : vérifier si le modèle d'un système (souvent informatique ou électronique) satisfait une propriété. Par exemple, on souhaite vérifier qu'un programme ne se bloque pas, qu'une variable n'est jamais nulle, etc. Généralement, la propriété est écrite dans un langage, souvent en logique temporelle. La vérification est généralement faite de manière automatique.
Afficher plus
Publications associées (93)

Automated Formal Verification of Software Network Functions

Solal Vincenzo Pirelli

Formally verifying the correctness of software is necessary to merit the trust people put in software systems. Currently, formal verification requires human effort to prove that a piece of code matches its specification and code changes to improve verifiab ...
EPFL2024

MultiModN- Multimodal, Multi-Task, Interpretable Modular Networks

Martin Jaggi, Mary-Anne Hartley, Vinitra Swamy, Jibril Albachir Frej, Thierry Bossy, Thijs Vogels, Malika Satayeva

Predicting multiple real-world tasks in a single model often requires a particularly diverse feature space. Multimodal (MM) models aim to extract the synergistic predictive potential of multiple data types to create a shared feature space with aligned sema ...
2023

Architecture and Abstraction

Pier Vittorio Aureli

In this theoretical study of abstraction in architecture—the first of its kind—Pier Vittorio Aureli argues for a reconsideration of abstraction, its meanings, and its sources. Although architects have typically interpreted abstraction in formal terms—the p ...
The MIT Press2023
Afficher plus
MOOCs associés (22)
Parallelism and Concurrency
(merge of parprog1, scala-reactive, scala-spark-big-data)
Functional Programming
In this course you will discover the elements of the functional programming style and learn how to apply them usefully in your daily programming tasks. You will also develop a solid foundation for rea
Functional Programming Principles in Scala [retired]
This advanced undergraduate programming course covers the principles of functional programming using Scala, including the use of functions as values, recursion, immutability, pattern matching, higher-
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.