Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The shift to multi-core hardware brings new challenges to database systems, as the software parallelism determines performance. Even though database systems traditionally accommodate simultaneous requests, a multitude of synchronization barriers serialize execution. Write-ahead logging is a fundamental, omnipresent component in ARIES-style concurrency and recovery, and one of the most important yet-to-be addressed potential bottlenecks, especially in OLTP workloads with small and frequent changes to data. In this paper, we identify four logging-related impediments to database system scalability. Each issue challenges different level in the software architecture: (a) the high volume of small-sized I/O requests may saturate the disk, (b) transactions hold locks while waiting for the log flush, (c) extensive context switching overwhelms the OS scheduler with threads executing log I/Os, and (d) contention appears as transactions serialize accesses to in-memory log data structures. We demonstrate these problems and address them with techniques that, when combined, comprise a holistic, scalable approach to logging. Our solution achieves a 20%-69% speedup over a modern database system when running log-intensive workloads, such as the TPC-B and TATP benchmarks. Moreover, it achieves a log insert throughput of small-sized log records of over 1.8GB/s on a modern single socket server, an order of magnitude higher than the traditional way of accessing the log using a single mutex.
Anastasia Ailamaki, Georgios Psaropoulos