Spectroscopic Studies on Semiconducting Interfaces with Giant Spin Splitting
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
A high frequency (111.2-420 GHz) electron spin resonance study of the interlayer spin diffusion is presented in the conducting phases of the layered organic compounds, kappa-( BEDT-TTF)(2)Cu[N(CN)(2)]X (kappa-ET2-X), X = Cl or Br. The interlayer spin cross ...
The Nernst coefficient of the cuprate superconductor YBa2Cu 3Oy was recently shown to become strongly anisotropic within the basal plane when cooled below the pseudogap temperature T, revealing that the pseudogap phase breaks the fourfold rotational symmet ...
Spin–orbit coupling (SOC) is an essential factor in photophysics of heavy transition metal com- plexes. By enabling efficient population of the lowest triplet state and its strong emission, it gives rise to a very interesting photophysical behavior and und ...
We discuss two different approaches for tuning the giant spin-orbit splitting of a BiAg2 surface alloy. The first approach consists of electron doping by alkaline metal deposition in order to shift the energy position of the spin-split surface states, whil ...
A giant spin splitting has been observed in surface alloys on noble metal (111) surfaces as a result of a strong structural modification at the surface as well as the large atomic spin-orbit interaction (SOI) of the alloy atoms. These surface alloys are an ...
Spin caloritronics, i.e., the addition of thermal effects to the electrical and magnetic properties of nanostructures, has recently seen a rapid development. It has been predicted that a heat current can exert a spin torque on the magnetization in a nanost ...
We study the spin dynamics in arrays of densely packed submicron Ni80Fe20 wires which form one-dimensional magnonic crystals. They are subject to an in-plane magnetic field H being collinear with the wires. In the case when neighboring wires are magnetized ...
We report a comprehensive study of magnetic properties of Ni3TeO6. The system crystallizes in a noncentrosymmetric rhombohedral lattice, space group R3. There are three differently coordinated Ni atoms in the unit cell. Two of them form an almost planar ho ...
We investigate the interplay between the governing magnetic energy terms in patterned La0.7Sr0.3MnO3 (LSMO) elements by direct high-resolution x-ray magnetic microscopy as a function of temperature and geometrical parameters. We show that the magnetic conf ...
In this thesis we make use of the Spin Transfer Torque effect from a continuous microwave current to induce and study the spin dynamics of an individual sub-100 nm nanostructure. The idea that an electrical current can carry a spin angular momentum was int ...