Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The tandem photoelectochemical (PEC) cell based on oxide semiconductors for water splitting offers a potentially inexpensive route for solar hydrogen generation. At the heart of the device, a nanostructured photoanode for water oxidation is connected in se ...
Besides the exciting possibilities of using dye-sensitized solar cells (DSC) for solar energy application the fundamental science of the device is as thrilling.This talk summarizes our research and development in DSC and solar fuels. For example, in 2010, ...
A review. Plants have evolved highly sophisticated light-harvesting mechanisms that allow for increased environmental tolerances and robustness, enhanced photo-efficiencies and prolonged lifetimes. These mechanisms incorporate the dynamic, cyclic self-asse ...
Efficiently and inexpensively converting solar energy into chemical fuels is an important goal towards a sustainable energy economy. An integrated tandem cell approach could reasonably convert over 20% of the sun's energy directly into chemical fuels like ...
In order to be economically competitive with simple "brute force" (i.e., PV + electrolyzer) strategies or the production of promising solar fuels, like H-2, from fossil fuels, a practical photoelectrochemical device must optimize cost, longevity, and perfo ...
Photoelectrochemical (PEC) cells offer the ability to convert electromagnetic energy from our largest renewable source, the Sun, to stored chemical energy through the splitting of water into molecular oxygen and hydrogen. Hematite (alpha-Fe2O3) has emerged ...
A review on some of the key aspects of photovoltaic (PV) technol. and the ongoing effort to exploit the planet's largest energy source. It focuses on the inorg. materials: the core of current and developing PV technol. and a research area crucial to the fu ...
Given the limitations of the materials available for photoelectrochemical water splitting, a multiphoton (tandem) approach is required to convert solar energy into hydrogen efficiently and durably. Here we investigate a promising system consisting of a hem ...
The direct conversion of sun light to elec. power in mol. photoelectrochem. systems, aka Gratzel solar cells, is one of the promising "solar technologies" for utilization of abundant solar light as alternative energy source. Considering advantages of Gratz ...
Naturally occurring photosynthetic systems in plants are supported by elaborate pathways of self-repair that limit the impact of photo-damage. Herein, we demonstrate a complex consisting of two recombinant proteins, phospholipids and a carbon nanotube that ...