Efficiency of NH3 as nitrogen source for GaN molecular beam epitaxy
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We report on the growth by metalorganic vapor phase epitaxy of a InGaN/GaN resonant-cavity light emitting diode (RCLED) emitting at 454 nm and incorporating a 12-pair Al0.82In0.18N/GaN distributed Bragg reflector as bottom mirror. A(1-x)In(x)N layers with ...
GaN and InGaN layers are grown by molecular beam epitaxy using ammonia as nitrogen precursor. The lattice mismatch between InN and GaN is very large and a Stranski-Krastanov (SK) growth mode transition can occur above a critical In composition. However, ch ...
GaN/Al0.1Ga0.9N quantum wells (QWs) are grown by molecular beam epitaxy on (0001) sapphire and (0001) GaN single-crystal substrates. Their optical properties are investigated by temperature-dependent photoluminescence (PL). Ar room temperature, the integra ...
We have compared the In distribution in InGaN quantum wells grown by molecular beam epitaxy (MBE) and metalorganic vapor phase epitaxy (MOVPE). The samples were studied by conventional and high-resolution transmission electron microscopy (HRTEM). The local ...
We report on the progress in the growth of highly reflective AlInN-GaN distributed Bragg reflectors deposited by metalorganic vapor phase epitaxy. Al1-xInxN layers with an In content around x similar to 0.17 are lattice-matched to GaN, thus avoiding strain ...
InGaN/GaN single quantum wells (SQWs) are grown by molecular beam epitaxy using ammonia as a nitrogen precursor. The InGaN material quality is optimized through the photoluminescence (PL) properties. It is found that the growth temperature is critical for ...
We have grown GaN films and GaN-AlGaN quantum wells (QWs) on homoepitaxial substrates, by molecular beam epitaxy using ammonia. Both the GaN film and the QW are found to have superior excitonic recombination properties which are extremely promising for the ...
The lack of appropriate substrates has delayed the realisation of devices based on III-nitrides. Currently, the heteroepitaxial growth of GaN by metal organic vapour phase epitaxy (MOVPE) produces GaN layers which, despite huge densities of dislocations, a ...
InGaN/GaN heterostructure samples were grown by molecular beam epitaxy using ammonia as a nitrogen precursor. The growth of InGaN/GaN self-assembled quantum dots was monitored in situ by reflection high energy electron diffraction intensity oscillations. A ...
Highly selective oxidation of an AlInN interlayer buried in a GaN matrix is demonstrated. This technique was successfully applied to form current apertures in III-nitride light-emitting diodes (LEDs). GaN LEDs were grown by metal-organic vapor phase epitax ...