Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Gossip algorithms have recently received significant attention, mainly because they constitute simple and robust mes- sage-passing schemes for distributed information processing over networks. However, for many topologies that are realistic for wire- less ad-hoc and sensor networks (like grids and random geometric graphs), the standard nearest-neighbor gossip converges as slowly as flooding ( O(n^2) messages). A recently proposed algorithm called geographic gossip improves gossip efficiency by a n^1/2 factor, by exploiting geographic information to enable multihop long-distance communications. This paper proves that a variation of geographic gossip that averages along routed paths, improves efficiency by an additional n^1/2 factor, and is order optimal (O(n) messages) for grids and random geometric graphs with high prob- ability. We develop a general technique (travel agency method) based on Markov chain mixing time inequalities which can give bounds on the performance of randomized message-passing algo- rithms operating over various graph topologies.