Iterative Learning Control Using Stochastic Approximation Theory with Application to a Mechatronic System
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Iterative Learning Control (ILC) is a technique used to improve the tracking performance of systems carrying out repetitive tasks, which are affected by deterministic disturbances. The achievable performance is greatly degraded, however, when non-repeating ...
In this paper stochastic approximation theory is used to produce Iterative Learning Control algorithms which are less sensitive to stochastic disturbances, a typical problem for the learning process of standard ILC algorithms. Two algorithms are developed, ...
This thesis explores the application of ensemble methods to sequential learning tasks. The focus is on the development and the critical examination of new methods or novel applications of existing methods, with emphasis on supervised and reinforcement lear ...
Iterative Learning Control (ILC) is a technique used to improve the tracking performance of systems carrying out repetitive tasks, which are affected by deterministic disturbances. The achievable performance is greatly degraded, however, when non-repeating ...
This thesis explores the application of ensemble methods to sequential learning tasks. The focus is on the development and the critical examination of new methods or novel applications of existing methods, with emphasis on supervised and reinforcement lear ...
We propose an online learning algorithm to tackle the problem of learning under limited computational resources in a teacher-student scenario, over multiple visual cues. For each separate cue, we train an online learning algorithm that sacrifices performan ...
In this paper we present a software model of the Winner Takes Most (WTM) Kohonen neural network (KNN) with different types of the neighborhood grid. The proposed network model allows for analysis of the convergence properties such as the quantization error ...
Peer-to-peer (P2P) architectures are popular for tasks such as collaborative download, VoIP telephony, and backup. To maximize performance in the face of widely variable storage capacities and bandwidths, such systems typically need to shift work from poor ...
We consider the problem of decentralized Kalman filtering in a sensor network. Each sensor node implements a local Kalman filter based on its own measurements and the information exchanged with its neighbors. It combines the information received from other ...
Recently, sequential Monte Carlo methods have been used in the telecommunications field, finding application in receiver design. Several properties of these receivers make their designs very attractive. These receivers do not require channel state informat ...