Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays
Publications associées (98)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
To characterize the behavior and robustness of cellular circuits is a major challenge for Systems Biology. Many of the published methods that address this question quantify the local robustness of the models. In this thesis, I tried to underpin the inappro ...
Circadian oscillator networks rely on a transcriptional activator called CLOCK/CYCLE (CLK/CYC) in insects and CLOCK/BMAL1 or NPAS2/BMAL1 in mammals. Identifying the targets of this heterodimeric basic-helix-loop-helix (bHLH) transcription factor poses chal ...
Background: Fluorescent and bioluminescent time-lapse microscopy approaches have been successfully used to investigate molecular mechanisms underlying the mammalian circadian oscillator at the single cell level. However, most of the available software and ...
Mammalian circadian oscillators are considered to rely on transcription/translation feedback loops in clock gene expression. The major and essential loop involves the autorepression of cryptochrome (Cry1, Cry2) and period (Per1, Per2) genes. The rhythm-gen ...
Tetrachloroethene (PCE) reductive dehalogenases are the key catalysts in the respiratory chain of dehalorespiring microorganisms, where they act as the terminal electron-accepting enzymes in the process. On protein level, reductive dehalogenases have been ...
Cell-autonomous and self-sustained molecular oscillators drive circadian behavior and physiology in mammals. From rhythms recorded in cultured fibroblasts we identified the dominant cause for amplitude reduction as desynchronization of self-sustained oscil ...
Nature / European Molecular Biology Organization2007
Cultured circadian oscillators from peripheral tissues were recently shown to be both cell-autonomous and self-sustained. Therefore, the dominant cause for amplitude reduction observed in bioluminescence recordings of cultured fibroblasts is desynchronizat ...
Cultured circadian oscillators from peripheral tissues were recently shown to be both cell-autonomous and self-sustained. Therefore, the dominant cause for amplitude reduction observed in bioluminescence recordings of cultured fibroblasts is desynchronizat ...
Purpose: To characterize the clinical, psychophysical, and electrophysiological phenotypes in a five-generation Swiss family with dominantly inherited retinitis pigmentosa caused by a T494M mutation in the Precursor mRNA-Processing factor 3 (PRPF3) gene, a ...
We evaluated the application of gas chromatography-mass spectrometry metabolic fingerprinting to classify forward genetic mutants with similar phenotypes. Mutations affecting distinct metabolic or signaling pathways can result in common phenotypic traits t ...