**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Scale-Invariant Models of Gravity and Particle Physics and their Cosmological Implications

Résumé

Currently, the best theoretical description of fundamental matter and its gravitational interaction is given by the Standard Model (SM) of particle physics and Einstein's theory of General Relativity (GR). These theories contain a number of seemingly unrelated scales. While Newton's gravitational constant and the mass of the Higgs boson are parameters in the classical action, the masses of other elementary particles are due to the electroweak symmetry breaking. Yet other scales, like ΛQCD associated to the strong interaction, only appear after the quantization of the theory. We reevaluate the idea that the fundamental theory of nature may contain no fixed scales and that all observed scales could have a common origin in the spontaneous break-down of exact scale invariance. To this end, we consider a few minimal scale-invariant extensions of GR and the SM, focusing especially on their cosmological phenomenology. In the simplest considered model, scale invariance is achieved through the introduction of a dilaton field. We find that for a large class of potentials, scale invariance is spontaneously broken, leading to induced scales at the classical level. The dilaton is exactly massless and practically decouples from all SM fields. The dynamical break-down of scale invariance automatically provides a mechanism for inflation. Despite exact scale invariance, the theory generally contains a cosmological constant, or, put in other words, flat spacetime need not be a solution. We next replace standard gravity by Unimodular Gravity (UG). This results in the appearance of an arbitrary integration constant in the equations of motion, inducing a run-away potential for the dilaton. As a consequence, the dilaton can play the role of a dynamical dark-energy component. The cosmological phenomenology of the model combining scale invariance and unimodular gravity is studied in detail. We find that the equation of state of the dilaton condensate has to be very close to the one of a cosmological constant. If the spacetime symmetry group of the gravitational action is reduced from the group of all diffeomorphisms (Diff) to the subgroup of transverse diffeomorphisms (TDiff), the metric in general contains a propagating scalar degree of freedom. We show that the replacement of Diff by TDiff makes it possible to construct a scale-invariant theory of gravity and particle physics in which the dilaton appears as a part of the metric. We find the conditions under which such a theory is a viable description of particle physics and in particular reproduces the SM phenomenology. The minimal theory with scale invariance and UG is found to be a particular case of a theory with scale and TDiff invariance. Moreover, cosmological solutions in models based on scale and TDiff invariance turn out to generically be similar to the solutions of the model with UG. In usual quantum field theories, scale invariance is anomalous. This might suggest that results based on classical scale invariance are necessarily spoiled by quantum corrections. We show that this conclusion is not true. Namely, we propose a new renormalization scheme which allows to construct a class of quantum field theories that are scale-invariant to all orders of perturbation theory and where the scale symmetry is spontaneously broken. In this type of theory, all scales, including those related to dimensional transmutation, like ΛQCD, appear as a consequence of the spontaneous break-down of the scale symmetry. The proposed theories are not renormalizable. Nonetheless, they are valid effective theories below a field-dependent cut-off scale. If the scale-invariant renormalization scheme is applied to the presented minimal scale-invariant extensions of GR and the SM, the goal of having a common origin of all scales, spontaneous breaking of scale invariance, is achieved.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Concepts associés (48)

Invariance d'échelle

Il y a invariance d'échelle lorsqu'aucune échelle ne caractérise le système.
Par exemple, dans un ensemble fractal, les propriétés seront les mêmes quelle que soit la distance à laquelle on se plac

Constante cosmologique

La constante cosmologique est un paramètre ajouté par Einstein en février 1917 à ses équations de la relativité générale (1915), dans le but de rendre sa théorie compatible avec l'idée qu'il avait al

Énergie noire

vignette|redresse=1.1|Répartition de la densité d'énergie de l'Univers après exploitation des premières données obtenues par le satellite Planck. L'énergie noire en serait la composante principale.
E

Publications associées (104)

Chargement

Chargement

Chargement

Symmetries are omnipresent and play a fundamental role in the description of Nature. Thanks to them, we have at our disposal nontrivial selection rules that dictate how a theory should be constructed. This thesis, which is naturally divided into two parts, is devoted to the broad physical implications that spacetime symmetries can have on the systems that posses them. In the first part, we focus on local symmetries. We review in detail the techniques of a self-consistent framework -- the coset construction -- that we employed in order to discuss the dynamics of the theories of interest. The merit of this approach lies in that we can make the (spacetime) symmetry group act internally and thus, be effectively separated from coordinate transformations. We investigate under which conditions it is not needed to introduce extra compensating fields to make relativistic as well as nonrelativistic theories invariant under local spacetime symmetries and more precisely under scale (Weyl) transformations. In addition, we clarify the role that the field strength associated with shifts (torsion) plays in this context. We also highlight the difference between the frequently mixed concepts of Weyl and conformal invariance and we demonstrate that not all conformal theories (in flat or curved spacetime), can be coupled to gravity in a Weyl invariant way. Once this ``minimalistic'' treatment for gauging symmetries is left aside, new possibilities appear. Namely, if we consider the Poincar'e group, the presence of the compensating modes leads to nontrivial particle dynamics. We investigate in detail their behavior and we derive constraints such that the theory is free from pathologies. In the second part of the thesis, we make clear that even when not gauged, the presence of spontaneously broken (global) scale invariance can be quite appealing. First of all, it makes possible for the various dimensionful parameters that appear in a theory to be generated dynamically and be sourced by the vacuum expectation value of the Goldstone boson of the nonlinearly realized symmetry -- the dilaton. If the Standard Model of particle physics is embedded into a scale-invariant framework, a number of interesting implications for cosmology arise. As it turns out, the early inflationary stage of our Universe and its present-day acceleration become linked, a connection that might give us some insight into the dark energy dynamics. Moreover, we show that in the context of gravitational theories which are invariant under restricted coordinate transformations, the dilaton instead of being introduced ad hoc, can emerge from the gravitational part of a theory. Finally, we discuss the consequences of the nontrivial way this field emerges in the action.

The thesis is dedicated to two groups of questions arising in modern particle physics and cosmology. The first group concerns with the problem of stability of the electroweak (EW) vacuum in different environments. Due to its phenomenological significance, the problem attracts high attention in recent research. We contribute to this research in two directions.
First, we study decay rate of the EW vacuum at the inflationary stage of the universe. While in a low density, low temperature environment characteristic of the present-day universe the Standard Model EW vacuum is safely long-lived, the situation may be different during inflation. We estimate tunneling transition via Coleman-De Luccia instanton in this case and confirm that it is exponentially suppressed, contrary to the claims made in the literature.
Second, we compute the lifetime of the EW vacuum in a scale-invariant extension of the Standard Model and gravity, known as the Higgs-Dilaton theory. The theory passes phenomenological tests and provides us with a plausible cosmological scenario. To confirm its viability, it is necessary to check if the EW vacuum in this theory is sufficiently safe. We perform this check and find that features of the Higgs-Dilaton theory yield additional stabilization of the low-energy vacuum, compared to the Standard Model case.
Another group of questions addressed in the thesis is related to the hierarchy problem. Combining quantum scale invariance with the absence of new degrees of freedom above the EW scale leads to stability of the latter against perturbative quantum corrections. Nevertheless, the hierarchy between the weak and the Planck scales remains unexplained. We suggest that this hierarchy can be a manifestation of a non-perturbative effect relating low-energy and strong-gravity domains of the theory. To support this suggestion, we construct instanton configurations and investigate their contribution to the vacuum expectation value of the Higgs field.
The effect we find relies on properties of the theory in the ultraviolet regime. Non-minimal coupling of the Higgs field to the Ricci scalar and an approximate Weyl invariance of the theory in this regime are important ingredients of the mechanism. Dynamical gravity plays a crucial role in the effect as it leads to existence of instanton solutions suitable for generating the EW scale.

We study the general class of gravitational field theories constructed on the basis of scale invariance (and therefore absence of any mass parameters) and invariance under transverse diffeomorphisms, which are the 4-volume conserving coordinate transformations. We show that these theories are equivalent to a specific type of scalar-tensor theories of gravity (invariant under all diffeomorphisms) with a number of properties, making them phenomenologically interesting. They contain, in addition to the dimensionless coupling constants of the original theory, an arbitrary dimensionful parameter Lambda(0). This parameter is associated with an integration constant of the equations of motion, similar to the arbitrary cosmological constant appearing in unimodular gravity. We focus on the theories where Newton's constant and the electroweak scale emerge from the spontaneous breaking of scale invariance and are unrelated to Lambda(0). The massless particle spectrum of these theories contains the graviton and a new particle-dilaton. For Lambda(0) = 0, the massless dilaton has only derivative couplings to matter fields and the bounds on the existence of a 5th force are easily satisfied. As for the matter fields, we determine the conditions leading to a renormalizable low-energy theory. If Lambda(0) not equal 0, scale invariance is broken. The arbitrary constant Lambda(0) produces a "run-away" potential for the dilaton. As a consequence, the dilaton can act as a dynamical dark energy component. We elucidate the origin of the cosmological constant in the class of theories under consideration and formulate the condition leading to its absence. If this condition is satisfied, dark energy is purely dynamical and associated to the dilaton.

2011