Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Formulating effective coatings for use in nano- and biotechnology poses considerable technical challenges(1). If they are to provide abrasion resistance, coatings must be hard and adhere well to the underlying substrate(2). High hardness, however, comes at the expense of extensibility(3,4). This property trade-off makes the design of coatings for even moderately compliant substrates problematic, because substrate deformation easily exceeds the strain limit of the coating(5). Although the highest strain capacity of synthetic fibre coatings is less than 10%, deformable coatings are ubiquitous in biological systems(3,6). With an eye to heeding the lessons of nature, the cuticular coatings of byssal threads from two species of marine mussels, Mytilus galloprovincialis and Perna canaliculus, have been investigated. Consistent with their function to protect collagenous fibres in the byssal-thread core, these coatings show hardness and stiffness comparable to those of engineering plastics and yet are surprisingly extensible; the tensile failure strain of P. canaliculus cuticle is about 30% and that of M. galloprovincialis is a remarkable 70%. The difference in extensibility is attributable to the presence of deformable microphase-separated granules within the cuticle of M. galloprovincialis. The results have important implications in the design of bio-inspired extensible coatings.
Tobias Kippenberg, Alberto Beccari, Nils Johan Engelsen, Sergey Fedorov
François Maréchal, Véronique Michaud, Yves Leterrier, Harm-Anton Klok, Jeremy Luterbacher, Maxime Alexandre Clément Hedou, Adrien Julien Demongeot, Graham Reid Dick, Christèle Rayroud, Thibault Rambert
Mário Alexandre De Jesus Garrido, Mateus De Assunção Hofmann