Preuve (droit)vignette|Police scientifique cherchant des empreintes digitales qui serviront de preuves En droit, une preuve est un élément qui permet à un tiers de s'assurer de la véracité d'un fait. Dans la plupart des législations pénales ou civiles, l'altération de preuves visant, soit à altérer, falsifier ou effacer des traces ou indices, soit d’ouvrir une fausse piste, constitue une infraction grave punie par la loi. Preuve en droit civil français Preuve en droit pénal français Preuve en droit civil québécois Charge
Circumstantial evidenceCircumstantial evidence is evidence that relies on an inference to connect it to a conclusion of fact—such as a fingerprint at the scene of a crime. By contrast, direct evidence supports the truth of an assertion directly—i.e., without need for any additional evidence or inference. On its own, circumstantial evidence allows for more than one explanation. Different pieces of circumstantial evidence may be required, so that each corroborates the conclusions drawn from the others.
Mathématiques à reboursLes mathématiques à rebours sont une branche des mathématiques qui pourrait être définie simplement par l'idée de « remonter aux axiomes à partir des théorèmes », contrairement au sens habituel (des axiomes vers les théorèmes). Un peu plus précisément, il s'agit d'évaluer la robustesse logique d'un ensemble de résultats mathématiques usuels en déterminant exactement quels axiomes sont nécessaires et suffisants pour les prouver. Le domaine a été créé par Harvey Friedman dans son article « Some systems of second order arithmetic and their use ».
Fondements des mathématiquesLes fondements des mathématiques sont les principes de la philosophie des mathématiques sur lesquels est établie cette science. Le logicisme a été prôné notamment par Gottlob Frege et Bertrand Russell. La mathématique pure présente deux caractéristiques : la généralité de son discours et la déductibilité du discours mathématique . En ce que le discours mathématique ne prétend qu’à une vérité formelle, il est possible de réduire les mathématiques à la logique, les lois logiques étant les lois du « vrai ».
ComputationA computation is any type of arithmetic or non-arithmetic calculation that is well-defined. Common examples of computations are mathematical equations and computer algorithms. Mechanical or electronic devices (or, historically, people) that perform computations are known as computers. The study of computation is the field of computability, itself a sub-field of computer science. The notion that mathematical statements should be ‘well-defined’ had been argued by mathematicians since at least the 1600s, but agreement on a suitable definition proved elusive.
Sciences numériquesLes sciences numériques (traduction de l'anglais computational sciences), autrement dénommées calcul scientifique ou informatique scientifique, ont pour objet la construction de modèles mathématiques et de méthodes d'analyse quantitative, en se basant sur l'utilisation des sciences du numérique, pour analyser et résoudre des problèmes scientifiques. Cette approche scientifique basée sur un recours massif aux modélisations informatiques et mathématiques et à la simulation se décline en : médecine numérique, biologie numérique, archéologie numérique, mécanique numérique, par exemple.
Physique numériqueLa physique numérique (ou parfois physique informatique) est l'étude et l'implémentation d'algorithmes numériques dans le but de résoudre des problèmes physiques pour lesquels une théorie existe déjà. Elle est souvent considérée comme une sous-discipline de la physique théorique mais certains la considèrent comme une branche intermédiaire entre la physique théorique et la physique expérimentale. En général, les physiciens définissent un système et son évolution grâce à des formules mathématiques précises.