Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Streamflow time series are important for inference and understanding of the hydrological processes in alpine watersheds. Because streamflow is expensive to continuously measure directly, it is usually derived from measured water levels, using a rating curv ...
In this paper, OFDM data-aided channel estimation based on the decimation of the Channel Impulse Response (CIR) through the selection of the Most Significant Samples (MSS) is addressed. Our aim is to approach the Minimum Mean Square Error (MMSE) channel es ...
Institute of Electrical and Electronics Engineers2012
We investigate the problem of the optimal reconstruction of a generalized Poisson process from its noisy samples. The process is known to have a finite rate of innovation since it is generated by a random stream of Diracs with a finite average number of i ...
Denoising is an essential step prior to any higher-level image-processing tasks such as segmentation or object tracking, because the undesirable corruption by noise is inherent to any physical acquisition device. When the measurements are performed by phot ...
In this work, we consider a general form of noisy compressive sensing (CS) when there is uncertainty in the measurement matrix as well as in the measurements. Matrix uncertainty is motivated by practical cases in which there are imperfections or unknown ca ...
We investigate the problem of the optimal reconstruction of a generalized Poisson process from its noisy samples. The process is known to have a finite rate of innovation since it is generated by a random stream of Diracs with a finite average number of im ...
Adaptive networks, consisting of a collection of nodes with learning abilities, are well-suited to solve distributed inference problems and to model various types of self-organized behavior observed in nature. One important issue in designing adaptive netw ...
In this work, we consider a distributed beam coordination problem, where a collection of arrays are interconnected by a certain topology. The beamformers employ an adaptive diffusion strategy to compute the beamforming weight vectors by relying solely on c ...
Motivated by the need to smooth and to summarize multiple simultaneous time series arising from networks of environmental monitors, we propose a hierarchical wavelet model for which estimation of hyperparameters can be performed by marginal maximum likelih ...
One of the fundamental challenges in EEG signal processing is the selection of a proper method to correct ocular artifacts in the recorded electroencephalogram (EEG). Several methods have been proposed for this task. Among these methods, two main categorie ...