Fate of undifferentiated mouse embryonic stem cells within the rat heart: role of myocardial infarction and immune suppression
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Publications associées à Fate of undifferentiated mouse embryonic stem cells within the rat heart: role of myocardial infarction and immune suppression | EPFL Graph Search
Traditional cell cultures have long been fundamental to biological research, offering an alternative to animal models burdened by ethical constraints and procedural intricacies, often lacking relevance to human physiology and disease. Moreover, their inabi ...
The last two decades have seen the development of organoid models for many different tissues and organs. Organoids are three-dimensional organ-mimetics derived from stem or progenitor cells comprising various specialized cell types, resembling the architec ...
The sensing of left ventricular (LV) activity is fundamental in the diagnosis and monitoring of cardiovascular health in high-risk patients after cardiac surgery to achieve better short- and long-term outcome. Conventional approaches rely on noninvasive me ...
Background aims: Age-related macular degeneration (AMD) is the most common cause of blindness in elderly patients within developed countries, affecting more than 190 million worldwide. In AMD, the retinal pigment epithelial (RPE) cell layer progressively d ...
Background and Objective: Computational models of the cardiovascular system allow for a detailed and quantitative investigation of both physiological and pathological conditions, thanks to their ability to combine clinical-possibly patient-specific-data wi ...
Cells are the smallest operational units of living systems. Through synthesis of various biomolecules and exchange of signals with the environment, cells tightly regulate their composition to realize a specific functional state. The transformation of a cel ...
Communication between the intestine and other organs such as the lungs, brain or bones is mediated by several metabolites, like short-chain fatty acids or bile acids, that relay information about nutritional and microbiota status. Bile acids are endogenous ...
When generating in-silico clinical electrophysiological outputs, such as electrocardiograms (ECGs) and body surface potential maps (BSPMs), mathematical models have relied on single physics, i.e. of the cardiac electrophysiology (EP), neglecting the role o ...
Cell fate progression of pluripotent progenitors is strictly regulated, resulting in high human cell diversity. Epigenetic modifications also orchestrate cell fate restriction. Unveiling the epigenetic mechanisms underlying human cell diversity has been di ...
Cardiac digital twins provide a physics and physiology informed framework to deliver personalized medicine. However, high-fidelity multi-scale cardiac models remain a barrier to adoption due to their extensive computational costs. Artificial Intelligence-b ...