Information de FisherEn statistique, l'information de Fisher quantifie l'information relative à un paramètre contenue dans une distribution. Elle est définie comme l'espérance de l'information observée, ou encore comme la variance de la fonction de score. Dans le cas multi-paramétrique, on parle de matrice d'information de Fisher. Elle a été introduite par R.A. Fisher. Soit f(x ; θ) la distribution de vraisemblance d'une variable aléatoire X (qui peut être multidimensionnelle), paramétrée par θ.
MicroscopieLa microscopie est un ensemble de techniques d' des objets de petites dimensions. Quelle que soit la technique employée, l'appareil utilisé pour rendre possible cette observation est appelé un . Des mots grecs anciens mikros et skopein signifiant respectivement « petit » et « examiner », la microscopie désigne étymologiquement l'observation d'objets invisibles à l'œil nu. On distingue principalement trois types de microscopies : la microscopie optique, la microscopie électronique et la microscopie à sonde locale.
Système thermodynamiqueEn thermodynamique classique, un système thermodynamique est une portion de l'Univers que l'on isole par la pensée du reste de l'Univers, ce dernier constituant alors le milieu extérieur. Le système thermodynamique n'est pas forcément défini par une frontière matérielle, ni nécessairement connexe. Les gouttes de liquide dans un brouillard, par exemple, définissent un système thermodynamique. Le milieu extérieur considéré est constitué par la portion d'Univers en interaction avec le système étudié.
Fisher information metricIn information geometry, the Fisher information metric is a particular Riemannian metric which can be defined on a smooth statistical manifold, i.e., a smooth manifold whose points are probability measures defined on a common probability space. It can be used to calculate the informational difference between measurements. The metric is interesting in several respects. By Chentsov’s theorem, the Fisher information metric on statistical models is the only Riemannian metric (up to rescaling) that is invariant under sufficient statistics.
MicroscopeUn microscope est un instrument scientifique utilisé pour observer des objets trop petits pour être vus à l'œil nu. La microscopie est la science de l'étude de petits objets et structures à l'aide d'un tel instrument. Le microscope est un outil important en biologie, médecine et science des matériaux dès que les facteurs de grossissement d'une loupe se révèlent insuffisants. Les principes physiques utilisés pour l'effet de grossissement peuvent être de nature très différente.