Supersolid phase induced by correlated hopping in spin-1/2 frustrated quantum magnets
Publications associées (37)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Although the frustrated (zigzag) spin chain is the Drosophila of frustrated magnetism, our understanding of a pair of coupled zigzag chains (frustrated spin ladder) in a magnetic field is still lacking. We address this problem through nuclear magnetic reso ...
We study, using quantum Monte Carlo (QMC) simulations, the ground state properties of spin-1 bosons trapped in a square optical lattice. The phase diagram is characterized by the mobility of the particles (Mott insulating or superfluid phase) and by their ...
We report on magnetic fluctuations studied by electron spin resonance (ESR) spectroscopy in the layered organic crystal ?-(BEDT-TTF)2Cu[N(CN)2]Cl. A line broadening above the antiferromagnetic ordering temperature, TN?=?23?K is attributed to two-dimensiona ...
Building on a recent investigation of the Shastry-Sutherland model [S. Wessel et al., Phys. Rev. B 98, 174432 (2018)], we develop a general strategy to eliminate the Monte Carlo sign problem near the zero-temperature limit in frustrated quantum spin models ...
Spin systems with strong magnetic interactions might remain disordered avoiding conventional magnetic long-range ordering due to zero-point quantum fluctuations, and supporting a Quantum Spin Liquid (QSL) state. Long-range quantum entanglement in QSLs prom ...
Collective magnetic excitations are a fascinating aspect of condensed matter physics, where neutron scattering can provide valuable insight into the magnetic properties of physical realisations of model systems. This thesis focuses on the excitation spectr ...
We construct a 2 + 1 dimensional model that sustains superconductivity at all temperatures. This is achieved by introducing a Chern-Simons mixing term between two Abelian gauge fields A and Z. The superfluid is described by a complex scalar charged under Z ...
The spin-1/2 Heisenberg antiferromagnets in one and two dimensions are important models in quantum magnetism in which many-body effects play a crucial role. Their collective excitations are associated with quasiparticles the interaction of which are diffic ...
We investigate the competition between spin supersolidity and phase separation in a frustrated spin-half model of weakly coupled dimers. We start by considering systems of hard-core bosons on the square lattice, onto which the low-energy physics of the her ...
The temperature and magnetic field dependent magnetization of the two-dimensional quantum spin system Ni-5(TeO3)(4)Cl-2 has been investigated using single crystals in temperature range 1.8-100 K and in magnetic fields up to 14 T. The magnetization below th ...