Three-phase medium model for filled rock joint and interaction with stress waves
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Filling materials may exist in all scales of rock fractures, not only influencing seismic wave attenuation, but controlling rock mass instability. The objective of this study is to experimentally investigate the seismic response of rock fractures filled wi ...
The purpose of this study is to further investigate the seismic response of a set of parallel rock fractures filled with viscoelastic materials, following the work by Zhu et al. Dry quartz sands are used to represent the viscoelastic materials. The split H ...
The purpose of this study is to investigate the role of filling materials (e.g., quartz sand and kaolin clay) in the interaction between a P-wave and a rock fracture. The specific fracture stiffness reflects the seismic response of a filled fracture, while ...
In the present paper, the performance of Biot's theory is investigated for wave propagation in cellular and porous solids with entrained fluid for configurations with well-known drained (no fluid) mechanical properties. Cellular solids differ from porous s ...
Due to the presence of joints, waves are greatly attenuated when propagating across rock masses. Zhu et al. (2011) (Normally incident wave propagation across a joint set with virtual wave source method. J. Appl. Geophys.73, 283-288.) studied normally incid ...
Wave propagation in granular solids is found to have at least two regimes: a low-frequency ballistic signal and a high-frequency diffusive tail. The latter is attributed to granules clapping or elastic waves within the granules themselves. The low frequenc ...
Folding of the earth's crust, wrinkling of the skin, rippling of fruits, vegetables and leaves are all examples of natural structures that can have periodic buckling. Periodic buckling is also present in engineering structures such as compressed lattices, ...
In this paper, we carry out a numerical dispersion analysis for the linear two-dimensional elastodynamics equations approximated by means of NURBS-based Isogeometric Analysis in the framework of the Galerkin method; specifically, we consider the analysis o ...
Joints are an important mechanical feature of rock masses. Their effect on wave propagation is significant in characterizing dynamic behaviors of discontinuous rock masses. An experimental study on wave propagation across artificial rock joint was carried ...
The physical mechanism of elastic wave propagation through granular solids is investigated. Based on the symmetry of a one dimensional chain of spheres, spherical surface waves are considered to be responsible for the energy transport. A simple mathematica ...