Development of a multiwavelength aerosol and water-vapor lidar at the Jungfraujoch Alpine Station (3580 m above sea level) in Switzerland
Publications associées (34)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The adsorption of water on etched (001) surfaces of L-, D- and DL-valine crystals has been characterized by atomic force microscopy (AFM) using different operational modes (contact, non-contact and electrostatic) above and below the dew point, the temperat ...
A novel procedure has been developed to retrieve, simultaneously, the optical, microphysical and chemical properties of tropospheric aerosols with a multi-wavelength Raman lidar system in the troposphere over an urban site (Athens, Greece: 37.9° N, 23.6° E ...
In this manuscript we report dielectric measurements of Mg and Li doped ZnO ceramics and thin films of various compositions. We have tried to reproduce the reported ferroelectriclike behavior in doped ZnO ceramics and thin films and observed anomalous diel ...
The formation, growth, and destruction of surface hoar crystals is an important feature of mountain snow covers as buried surface hoar layers are a frequent weak layer leading to unstable snowpacks. The energy and mass exchange associated with surface hoar ...
Tropospheric ozone is a climate relevant greenhouse gas, as well as an atmospheric pollutant. Its abundance in the troposphere is mainly governed by the influx of stratospheric air masses and the photochemical production due to anthropogenic and biogenic o ...
Raman lidars exploit the proportionality between the intensity of scattered by a Raman process laser radiation and the number density of the scattering molecules to derive water vapor mixing ratio profile. Water vapor/air mixing ratio is directly proportio ...
A unified model framework with online-coupled meteorology and chemistry and consistent model treatments across spatial scales is required to realistically simulate chemistry-aerosol-cloud-radiation-precipitation-climate interactions. In this work, a global ...
A new multi-telescope scanning Raman lidar designed to measure the water vapor mixing ratio in the atmospheric boundary layer for a complete diurnal cycle with high resolution spatial (1.25 m) and temporal (1 s) resolutions is presented. The high resolutio ...
Water vapor is a fundamental constituent of the atmosphere and is the most abundant green house gas thus having an important influence on climate. It is as well a key prognostic variable for numerical weather prediction models (NWP). Currently, the vertica ...
The EPFL water vapor and temperature scanning solar blind Raman lidar is a research tool developed for atmospheric boundary layer studies. The lidar has raw spatial and temporal resolutions of 1.25 meters and 1 second respectively and offers a new vision o ...