Publication

An Efficient Numerical Method for General

Résumé

Reconstruction algorithms for fluorescence tomography have to address two crucial issues : 1) the ill-posedness of the reconstruction problem, 2) the large scale of numerical problems arising from imaging of 3-D samples. Our contribution is the design and implementation of a reconstruction algorithm that incorporates general Lp regularization (p ≥ 1). The originality of this work lies in the application of general Lp constraints to fluorescence tomography, combined with an efficient matrix-free strategy that enables the algorithm to deal with large reconstruction problems at reduced memory and computational costs. In the experimental part, we specialize the application of the algorithm to the case of sparsity promoting constraints (L1). We validate the adequacy of L1 regularization for the investigation of phenomena that are well described by a sparse model, using data acquired during phantom experiments.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.