Échographievignette|240px|droite|Échographie d'un fœtus de neuf semaines. L'échographie est une technique d' employant des ultrasons. Elle est utilisée de manière courante en médecine humaine et vétérinaire, mais peut aussi être employée en recherche et dans l'industrie. Le mot « échographie » provient de la nymphe Écho dans la mythologie grecque qui personnifiait ce phénomène et d'une racine grecque Graphô (écrire). Il se définit donc comme étant « un écrit par l'écho ».
UltrasonL'ultrason est une onde mécanique et élastique, qui se propage au travers de supports fluides, solides, gazeux ou liquides. La gamme de fréquences des ultrasons se situe entre , trop élevées pour être perçues par l'oreille humaine, mais un flux d'ultrasons de très haute intensité, et focalisé, peut être perçu par le corps humain, via d'autres mécanorécepteurs. Le nom vient du fait que leur fréquence est trop élevée pour être audible pour l'oreille humaine (le son est trop aigu : la gamme de fréquences audibles par l'être humain se situe entre 20 et .
Détection d'anomaliesDans l'exploration de données, la détection d'anomalies (en anglais, anomaly detection ou outlier detection) est l'identification d'éléments, d'événements ou d'observations rares qui soulèvent des suspicions en différant de manière significative de la majorité des autres données. Généralement, les anomalies indiquent un problème tel qu'une fraude bancaire, un défaut structurel, un problème médical ou une erreur dans un texte. Les anomalies sont également appelées des valeurs aberrantes, du bruit, des écarts ou des exceptions.
Weak supervisionWeak supervision, also called semi-supervised learning, is a paradigm in machine learning, the relevance and notability of which increased with the advent of large language models due to large amount of data required to train them. It is characterized by using a combination of a small amount of human-labeled data (exclusively used in more expensive and time-consuming supervised learning paradigm), followed by a large amount of unlabeled data (used exclusively in unsupervised learning paradigm).
Segmentation d'imageLa segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
Interface utilisateurL’interface utilisateur est un dispositif matériel ou logiciel qui permet à un usager d'interagir avec un produit informatique. C'est une interface informatique qui coordonne les interactions homme-machine, en permettant à l'usager humain de contrôler le produit et d'échanger des informations avec le produit. Parmi les exemples d’interface utilisateur figurent les aspects interactifs des systèmes d’exploitation informatiques, des logiciels informatiques, des smartphones et, dans le domaine du design industriel, les commandes des opérateurs de machines lourdes et les commandes de processus.
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Apprentissage non superviséDans le domaine informatique et de l'intelligence artificielle, l'apprentissage non supervisé désigne la situation d'apprentissage automatique où les données ne sont pas étiquetées (par exemple étiquetées comme « balle » ou « poisson »). Il s'agit donc de découvrir les structures sous-jacentes à ces données non étiquetées. Puisque les données ne sont pas étiquetées, il est impossible à l'algorithme de calculer de façon certaine un score de réussite.
Medical image computingMedical image computing (MIC) is an interdisciplinary field at the intersection of computer science, information engineering, electrical engineering, physics, mathematics and medicine. This field develops computational and mathematical methods for solving problems pertaining to medical images and their use for biomedical research and clinical care. The main goal of MIC is to extract clinically relevant information or knowledge from medical images.
Interface graphiquethumb|Quelques widgets typiques. En informatique, une interface graphique (en anglais GUI pour graphical user interface) ou un environnement graphique est un dispositif de dialogue homme-machine, dans lequel les objets à manipuler sont dessinés sous forme de pictogrammes à l'écran, de sorte que l'usager peut les utiliser en imitant la manipulation physique de ces objets avec un dispositif de pointage, le plus souvent une souris. Ce type d'interface a été créé en 1973 sur le Xerox Alto par les ingénieurs du Xerox PARC pour remplacer les interfaces en ligne de commande.