Structured Hölder condition numbers for multiple eigenvalues
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The focus of this thesis is on developing efficient algorithms for two important problems arising in model reduction, estimation of the smallest eigenvalue for a parameter-dependent Hermitian matrix and solving large-scale linear matrix equations, by extra ...
We consider the distance from a (square or rectangular) matrix pencil to the nearest matrix pencil in 2-norm that has a set of specified eigenvalues. We derive a singular value optimization characterization for this problem and illustrate its usefulness fo ...
Given a nonsymmetric matrix A, we investigate the effect of perturbations on an invariant subspace of A. The result derived in this paper differs from Stewart's classical result and sometimes yields tighter bounds. Moreover, we provide norm estimates for t ...
For a Hamiltonian matrix with purely imaginary eigenvalues, we aim to determine the nearest Hamiltonian matrix such that some or all eigenvalues leave the imaginary axis. Conversely, for a Hamiltonian matrix with all eigenvalues lying off the imaginary axi ...
We consider the solution of large-scale symmetric eigenvalue problems for which it is known that the eigenvectors admit a low-rank tensor approximation. Such problems arise, for example, from the discretization of high-dimensional elliptic PDE eigenvalue p ...
This work is concerned with numerical methods for matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. In particular, we focus on eigenvalue problems for which the evaluation of the matrix-valued function is computationally expensive. ...
In this paper, we propose a novel preconditioned solver for generalized Hermitian eigenvalue problems. More specifically, we address the case of a definite matrix pencil , that is, A, B are Hermitian and there is a shift such that is definite. Our new meth ...
The contragredient transformation A bar right arrow P-1 AP-(inverted perpendicular) , B bar right arrow P-inverted perpendicular BP of two matrices A, B effects simultaneous similarity transformations of the products AB and BA. This work provides structure ...
Many applications in computational science require computing the elements of a function of a large matrix. A commonly used approach is based on the the evaluation of the eigenvalue decomposition, a task that, in general, involves a computing time that scal ...
Invariant pairs have been proposed as a numerically robust means to represent and compute several eigenvalues along with the corresponding (generalized) eigenvectors for matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. In this wor ...