Tasting Families of Features for Image Classification
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Single Domain Generalization (SDG) tackles the problem of training a model on a single source domain so that it generalizes to any unseen target domain. While this has been well studied for image classification, the literature on SDG object detection remai ...
The performance of modern object detectors drops when the test distribution differs from the training one. Most of the methods that address this focus on object appearance changes caused by, e.g., different illumination conditions, or gaps between syntheti ...
inspectors that walk over the track and check the defects on the rail surface, fasteners and sleepers. In the case of concrete sleepers, rail inspectors classify defects according to their size and occurrence over 20 sleepers. The manual inspection is erro ...
Estimating the 3D poses of rigid and articulated bodies is one of the fundamental problems of Computer Vision. It has a broad range of applications including augmented reality, surveillance, animation and human-computer interaction. Despite the ever-growin ...
In recent years, Machine Learning based Computer Vision techniques made impressive progress. These algorithms proved particularly efficient for image classification or detection of isolated objects. From a probabilistic perspective, these methods can predi ...
Object-centric learning has gained significant attention over the last years as it can serve as a powerful tool to analyze complex scenes as a composition of simpler entities. Well-established tasks in computer vision, such as object detection or instance ...
Most recent 6D object pose estimation methods first use object detection to obtain 2D bounding boxes before actually regressing the pose. However, the general object detection methods they use are ill-suited to handle cluttered scenes, thus producing poor ...
Feature detection and description constitute important steps of many computer vision applications such as object detection and panorama stitching. Since those steps are computationally heavy, they might occupy significant portion of the full operation. Alt ...
In the context of automatic visual inspection of infrastructures by drones, Deep Learning (DL) models are used to automatically process images for fault diagnostics. While explainable Artificial Intelligence (AI) algorithms can provide explanations to asse ...
One of the main limitations of artificial intelligence today is its inability to adapt to unforeseen circumstances. Machine Learning (ML), due to its data-driven nature, is particularly susceptible to this. ML relies on observations in order to learn impli ...