Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Many state-of-the-art segmentation algorithms rely on Markov or Conditional Random Field models designed to enforce spatial and global consistency constraints. This is often accomplished by introducing additional latent variables to the model, which can greatly increase its complexity. As a result, estimating the model parameters or computing the best maximum a posteriori (MAP) assignment becomes a computationally expensive task.
Michel Bierlaire, Thomas Gasos, Prateek Bansal
, , , ,