Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this work, we pave the route towards the engineering of strong and spectrally sharp Fano resonances in plasmonic nanostructures and derive analytical formulas for their line shape as a function of their electromagnetic response. Contrary to the original work of Fano, the formalism proposed here includes losses in the materials composing the system. As a result, a more general formula is obtained for the response of the system and general conclusions for the determination of the resonance parameters are drawn, in particular on its width and asymmetry. Using a surface integral simulation technique for electromagnetic scattering on three-dimensional individual and periodic nanostructures, we numerically validate our model for structures that are currently under extensive investigation in the plasmonic and metamaterial communities. The insights into the physical comprehension of Fano resonances gained this way will be of great interest for the design of plasmonic sensing platforms and metamaterials.
Roland John Tormey, Siara Ruth Isaac, Nihat Kotluk
Roland John Tormey, Nihat Kotluk