Publication

Interactive Segmentation of 3D Medical Images with Implicit Surfaces

Benoit Mory
2011
Thèse EPFL
Résumé

To cope with a variety of clinical applications, research in medical image processing has led to a large spectrum of segmentation techniques that extract anatomical structures from volumetric data acquired with 3D imaging modalities. Despite continuing advances in mathematical models for automatic segmentation, many medical practitioners still rely on 2D manual delineation, due to the lack of intuitive semi-automatic tools in 3D. In this thesis, we propose a methodology and associated numerical schemes enabling the development of 3D image segmentation tools that are reliable, fast and interactive. These properties are key factors for clinical acceptance. Our approach derives from the framework of variational methods: segmentation is obtained by solving an optimization problem that translates the expected properties of target objects in mathematical terms. Such variational methods involve three essential components that constitute our main research axes: an objective criterion, a shape representation and an optional set of constraints. As objective criterion, we propose a unified formulation that extends existing homogeneity measures in order to model the spatial variations of statistical properties that are frequently encountered in medical images, without compromising efficiency. Within this formulation, we explore several shape representations based on implicit surfaces with the objective to cover a broad range of typical anatomical structures. Firstly, to model tubular shapes in vascular imaging, we introduce convolution surfaces in the variational context of image segmentation. Secondly, compact shapes such as lesions are described with a new representation that generalizes Radial Basis Functions with non-Euclidean distances, which enables the design of basis functions that naturally align with salient image features. Finally, we estimate geometric non-rigid deformations of prior templates to recover structures that have a predictable shape such as whole organs. Interactivity is ensured by restricting admissible solutions with additional constraints. Translating user input into constraints on the sign of the implicit representation at prescribed points in the image leads us to consider inequality-constrained optimization.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (36)
Segmentation d'image
La segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
Medical image computing
Medical image computing (MIC) is an interdisciplinary field at the intersection of computer science, information engineering, electrical engineering, physics, mathematics and medicine. This field develops computational and mathematical methods for solving problems pertaining to medical images and their use for biomedical research and clinical care. The main goal of MIC is to extract clinically relevant information or knowledge from medical images.
Analyse d'image
L'analyse d'image est la reconnaissance des éléments et des informations contenus dans une . Elle peut être automatisée lorsque l'image est enregistrée sous forme numérique, au moyen d'outils informatiques. Les tâches relevant de l'analyse d'image sont multiples, depuis la lecture de codes-barres, jusqu'à la reconnaissance faciale. L'analyse d'image intervient également dans le domaine de l'art et du graphisme, pour l'interprétation des compositions et signifiants.
Afficher plus
Publications associées (76)

Adaptive and Robust Partition Learning for Person Retrieval With Policy Gradient

Zhen Wei, Zhiye Wang, Peixia Li

Person retrieval aims at effectively matching the pedestrian images over an extensive database given a specified identity. As extracting effective features is crucial in a high-performance retrieval system, recent significant progress was achieved by part- ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2021

Graph Transform Optimization With Application to Image Compression

Pascal Frossard, Giulia Fracastoro

In this paper, we propose a new graph-based transform and illustrate its potential application to signal compression. Our approach relies on the careful design of a graph that optimizes the overall rate-distortion performance through an effective graph-bas ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2020

Voxel2Mesh: 3D Mesh Model Generation from Volumetric Data

Pascal Fua, Graham Knott, Pamuditha Udaranga Wickramasinghe, Edoardo Remelli

CNN-based volumetric methods that label individual voxels now dominate the field of biomedical segmentation. However, 3D surface representations are often required for proper analysis. They can be obtained by post-processing the labeled volumes which typic ...
2020
Afficher plus
MOOCs associés (22)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.