Big Crunchvignette|Animation illustrant le Big Crunch. En cosmologie, le Big Crunch ou effondrement terminal est un des possibles destins de l'Univers. Il désigne l'effondrement de l'Univers, c'est-à-dire une phase de contraction faisant suite à la phase d'expansion. C'est donc en quelque sorte un « Big Bang à l'envers », qui consiste à ramener le cosmos à un point de singularité d'origine annulant l'espace et le temps. Vers la fin de cet effondrement, l'Univers atteint une densité et une température gigantesques.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Constante cosmologiqueLa constante cosmologique est un paramètre ajouté par Einstein en février 1917 à ses équations de la relativité générale (1915), dans le but de rendre sa théorie compatible avec l'idée qu'il avait alors d'un Univers statique. La constante cosmologique est notée . Elle a la dimension d'une courbure de l'espace, . Depuis la fin des années 1990, les développements de la cosmologie ont montré que l'expansion de l'Univers, interprétée en termes de masse et d'énergie, pouvait être attribuée à 68 % à une « énergie sombre » dont l'effet est celui de la constante cosmologique.
Feasible regionIn mathematical optimization, a feasible region, feasible set, search space, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints, potentially including inequalities, equalities, and integer constraints. This is the initial set of candidate solutions to the problem, before the set of candidates has been narrowed down.
Gradientvignette|Chaque champ scalaire est représenté par un dégradé (blanc = valeur basse, noir = valeur haute). Chaque gradient est un champ vectoriel, représenté par des flèches bleues ; chacune pointe dans la direction où le champ scalaire croît le plus vite. vignette|La fonction à deux variables f(x, y) = xe−(x2 + y2) correspond à la température (bleu = valeur basse = froid, rouge = valeur haute = chaud). Le gradient de f est un champ vectoriel, représenté par les flèches bleues ; chacune pointe dans la direction où la température croît le plus vite.