Influence of electromagnetic interactions on the lineshape of plasmonic Fano resonances
Publications associées (54)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Plasmonic nanostructures allow to controllably enhance linear and nonlinear light-matter interactions by concentrating the electromagnetic fields at the scales below the diffraction limit. This feature is highly desired for many applications, e.g. bio- and ...
Locally-resonant sonic metamaterials refer to synthetic acoustic matter composed of artificial acoustic “atoms”, generally passive, and of subwavelength sizes, that are capable of resonantly interacting with an external acoustic wave, and manipulate it in ...
We investigate the invisibility via anomalous localized resonance of a general source in anisotropic media for electromagnetic waves. To this end, we first introduce the concept of doubly complementary media in the electromagnetic setting. These are media ...
Chirality is present as a trend of research in biological and chemical communities for it has a significant effect on physiological properties and pharmacological effects. Further, manipulating specific morphological chirality recently has emerged as a pro ...
Nonlinear processes are important in many fields of photonics ranging from biomedical imaging to ultrashort pulse generation. Progress in nanophotonics and metamaterials has created a growing demand for nanoscale nonlinear optical components. However, it i ...
The utilization of subwavelength resonators, such as small electric dipoles, plasmonic resonators, or objects made of materials with a high dielectric constant, has enabled the manipulation of electromagnetic fields down to the subwavelength regime with sy ...
Initially proposed to achieve strong noise isolation levels beyond the mass-density law, acoustic metamaterials (AMMs) have now overturned the conventional views in all aspects of sound propagation and manipulation. In fact, within the last two decades, th ...
Acoustic resonators play a key role in the development of subwavelength-sized technologies capable of interacting with airborne audible sound, from its emission and absorption to its manipulation and processing. Specifically, artificial acoustic media made ...
The appeal of plasmonics lies in the unique properties of coinage metal nanoparticles to strongly confine and enhance electromagnetic fields at the subwavelength. A simple 50 nm colloidal plasmonic particle can not only break the classical diffraction limi ...
Locally-resonant metamaterial crystals are artificial materials built from small spatially-local resonant inclusions arranged periodically at subwavelength scale. Unlike conventional continuous metamaterials, for which spatial dispersion originates mostly ...