Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Motivated by the lack of an obvious spectroscopic probe to investigate nonconventional order such as quadrupolar orders in spin S > 1/2 systems, we present a theoretical approach to inelastic light scattering for spin-1 quantum magnets in the context of a two-band Hubbard model. In contrast to the S = 1/2 case, where the only type of local excited state is a doubly occupied state of energy U, several local excited states with occupation up to four electrons are present. As a consequence, we show that two distinct resonating scattering regimes can be accessed depending on the incident photon energy. For (h) over bar omega(in) less than or similar to U, the standard Loudon-Fleury operator remains the leading term of the expansion as in the spin-1/2 case. For (h) over bar omega(in) less than or similar to 4U, a second resonant regime is found with a leading term that takes the form of a biquadratic coupling similar to(S-i . S-j)(2). Consequences for the Raman spectra of S = 1 magnets with magnetic or quadrupolar order are discussed. Raman scattering appears to be a powerful probe of quadrupolar order.
Frédéric Mila, Mithilesh Nayak